您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 德阳市绵竹市2016届九年级上期末数学试卷含答案解析
2015-2016学年四川省德阳市绵竹市九年级(上)期末数学试卷一、单项选择题(本题满分36分,共有12道小题,每小题3分)1.向上抛掷一枚硬币,落地后正面向上这一事件是()A.必然发生B.不可能发生C.可能发生也可能不发生D.以上都对2.用配方法解方程:x2﹣4x+2=0,下列配方正确的是()A.(x﹣2)2=2B.(x+2)2=2C.(x﹣2)2=﹣2D.(x﹣2)2=63.如图,用直角三角板经过两次画图找到圆形工件的圆心,这种方法应用的道理是()A.垂径定理B.勾股定理C.直径所对的圆周角是直角D.90°的圆周角所对的弦是直径4.如图,已知A、B、C、D、E均在⊙O上,且AC为直径,则∠A+∠B+∠C=()度.A.30B.45C.60D.905.如图,在长为100米,宽为80米的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7644米2,则道路的宽应为多少米?设道路的宽为x米,则可列方程为()A.100×80﹣100x﹣80x=7644B.(80﹣x)+x2=7644C.(80﹣x)=7644D.100x+80x=3566.已知点A的坐标为(a,b),O为坐标原点,连接OA,将线段OA绕点O按逆时针方向旋转90°得OA1,则点A1的坐标为()A.(﹣a,b)B.(a,﹣b)C.(﹣b,a)D.(b,﹣a)7.从2,﹣2,1,﹣1四个数中任取2个不同的数求和,其和为1的概率是()A.B.C.D.8.若关于x的一元二次方程为ax2+bx+5=0(a≠0)的解是x=1,则2014﹣a﹣b的值是()A.2019B.2009C.2015D.20139.二次函数y=ax2+bx+c图象上部分点的坐标满足下表:x…﹣3﹣2﹣101…y…﹣3﹣2﹣3﹣6﹣11…则该函数图象的顶点坐标为()A.(﹣3,﹣3)B.(﹣2,﹣2)C.(﹣1,﹣3)D.(0,﹣6)10.如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,若∠B=60°,则∠1的度数是()A.15°B.25°C.10°D.20°11.如图,动点P从点A出发,沿线段AB运动至点B后,立即按原路返回.点P在运动过程中速度大小不变.则以点A为圆心,线段AP长为半径的圆的面积S与点P的运动时间t之间的函数图象大致为()A.B.C.D.12.己知二次函数y=ax2+bx+c的图象如图所示,其对称轴为直线x=﹣1,给出下列结论:(1)abc>0;(2)2a+b=0;(3)a+b+c>0;(4)a﹣b+c<0,则正确的结论是()A.(l)(2)B.(2)(3)C.(2)(4)D.(3)(4)二、填空题(每小题3分,共18分)13.抛物线y=3(x﹣2)2+5的顶点坐标是.14.把二次函数y=(x﹣1)2+2的图象绕原点旋转180°后得到的图象的解析式为.15.小李是9人队伍中的一员,他们随机排成一列队伍,从1开始按顺序报数,小李报到偶数的概率是.16.⊙O的直径为10,弦AB=6,P是弦AB上一动点,则OP的取值范围是.17.关于x的方程(m2﹣1)x3+(m﹣1)x2+2x+6=0,当m=时为一元二次方程.18.如图,下面是按照一定规律画出的“树形图”,经观察可以发现:图A2比图A1多出2个“树枝”,图A3比图A2多出4个“树枝”,图A4比图A3多出8个“树枝”,…,照此规律,图A6比图A2多出个“树枝”.三.解答题(本大题有7小题,共66分,解答应写出文字说明、证明过程或演算步骤)19.用公式法解方程:5x2﹣3x=x+1.20.如图,方格纸中每个小正方形的边长都是1个单位长度,△ABC在平面直角坐标系中的位置如图所示.(1)将△ABC向上平移3个单位后,得到△A1B1C1,请画出△A1B1C1,并直接写出点A1的坐标.(2)将△ABC绕点O顺时针旋转90°,请画出旋转后的△A2B2C2,并求点B所经过的路径长(结果保留x)21.如图,在△ABC中,∠C=90°,AD是∠BAC的平分线,O是AB上一点,以OA为半径的⊙O经过点D.(1)求证:BC是⊙O切线;(2)若BD=5,DC=3,求AC的长.22.在一个口袋中有4个完全相同的小球,把它们分别标号为1、2、3、4,随机地摸取一个小球然后放回,再随机地摸出一个小球,求下列事件的概率:(1)两次取的小球的标号相同;(2)两次取的小球的标号的和等于4.23.已知:如图1,在面积为3的正方形ABCD中,E、F分别是BC和CD边上的两点,AE⊥BF于点G,且BE=1.(1)求证:△ABE≌△BCF;(2)求出△ABE和△BCF重叠部分(即△BEG)的面积;(3)现将△ABE绕点A逆时针方向旋转到△AB′E′(如图2),使点E落在CD边上的点E′处,问△ABE在旋转前后与△BCF重叠部分的面积是否发生了变化?请说明理由.24.某商场新进一批商品,每个成本价25元,销售一段时间发现销售量y(个)与销售单价x(元/个)之间成一次函数关系,如下表:x(元/个)3050y(个)190150(1)求y与x之间的函数关系式;(2)若该商品的销售单价在45元~80元之间浮动,①销售单价定为多少元时,销售利润最大?此时销售量为多少?②商场想要在这段时间内获得4550元的销售利润,销售单价应定为多少元?25.如图,对称轴为直线x=的抛物线经过点A(6,0)和B(0,4).(1)求抛物线解析式及顶点坐标;(2)设点E(x,y)是抛物线上一动点,且位于第四象限,四边形OEAF是以OA为对角线的平行四边形,求平行四边形OEAF的面积S与x之间的函数关系式,并写出自变量x的取值范围;①当平行四边形OEAF的面积为24时,请判断平行四边形OEAF是否为菱形?②是否存在点E,使平行四边形OEAF为正方形?若存在,求出点E的坐标;若不存在,请说明理由.2015-2016学年四川省德阳市绵竹市九年级(上)期末数学试卷参考答案与试题解析一、单项选择题(本题满分36分,共有12道小题,每小题3分)1.向上抛掷一枚硬币,落地后正面向上这一事件是()A.必然发生B.不可能发生C.可能发生也可能不发生D.以上都对【考点】随机事件.【分析】根据事件发生的可能性判断正确选项即可.【解答】解:向上抛掷一枚硬币,落地后正面向上这一事件是可能发生也可能不发生.故选C.2.用配方法解方程:x2﹣4x+2=0,下列配方正确的是()A.(x﹣2)2=2B.(x+2)2=2C.(x﹣2)2=﹣2D.(x﹣2)2=6【考点】解一元二次方程-配方法.【分析】在本题中,把常数项2移项后,应该在左右两边同时加上一次项系数﹣4的一半的平方.【解答】解:把方程x2﹣4x+2=0的常数项移到等号的右边,得到x2﹣4x=﹣2,方程两边同时加上一次项系数一半的平方,得到x2﹣4x+4=﹣2+4,配方得(x﹣2)2=2.故选:A.3.如图,用直角三角板经过两次画图找到圆形工件的圆心,这种方法应用的道理是()A.垂径定理B.勾股定理C.直径所对的圆周角是直角D.90°的圆周角所对的弦是直径【考点】垂径定理的应用.【分析】根据垂径定理的定义判断即可.【解答】解:因为非直径的弦的垂直平分线必过圆心,所以用直角三角板经过两次画图找到圆形工件的圆心应用的道理是垂径定理,故选A.4.如图,已知A、B、C、D、E均在⊙O上,且AC为直径,则∠A+∠B+∠C=()度.A.30B.45C.60D.90【考点】圆周角定理.【分析】首先连接AB,BC,由AC为直径,根据直径所对的圆周角是直角,即可得∠ABC=90°,又由在同圆或等圆中,同弧或等弧所对的圆周角相等,即可求得∠CBD=∠CAD,∠ABE=∠ACE,继而求得答案.【解答】解:连接AB,BC,∵AC为直径,∴∠ABC=90°,∵∠CBD=∠CAD,∠ABE=∠ACE,∴∠CAD+∠EBD+∠ACE=∠CBD+∠EBD+∠ABE=∠ABC=90°.故选D.5.如图,在长为100米,宽为80米的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7644米2,则道路的宽应为多少米?设道路的宽为x米,则可列方程为()A.100×80﹣100x﹣80x=7644B.(80﹣x)+x2=7644C.(80﹣x)=7644D.100x+80x=356【考点】由实际问题抽象出一元二次方程.【分析】把所修的两条道路分别平移到矩形的最上边和最左边,则剩下的草坪是一个长方形,根据长方形的面积公式列方程.【解答】解:设道路的宽应为x米,由题意有(80﹣x)=7644,故选C.6.已知点A的坐标为(a,b),O为坐标原点,连接OA,将线段OA绕点O按逆时针方向旋转90°得OA1,则点A1的坐标为()A.(﹣a,b)B.(a,﹣b)C.(﹣b,a)D.(b,﹣a)【考点】坐标与图形变化-旋转.【分析】根据旋转的概念结合坐标系的特点,利用全等三角形的知识,即可解答.【解答】解:设点A(a,b)坐标平面内一点,逆时针方向旋转90°后A1应与A分别位于y轴的两侧,在x轴的同侧,横坐标符号相反,纵坐标符号相同.作AM⊥x轴于M,A′N⊥x轴于N点,在直角△OAM和直角△A1ON中,OA=OA1,∠AOM=∠OA1N,∠AMO=∠ONA1=90°,∴△OAM≌△A1ON∴A1N=OM,ON=AM∴A1的坐标为(﹣b,a)故选C.7.从2,﹣2,1,﹣1四个数中任取2个不同的数求和,其和为1的概率是()A.B.C.D.【考点】列表法与树状图法.【分析】列举出所有情况,让和为1的情况数除以总情况数即为所求的概率.【解答】解:列表得:2﹣21﹣124031﹣20﹣4﹣1﹣313﹣120﹣11﹣30﹣2∴一共有12种情况,和为1的有2种情况;∴和为1的概率==,故选A.8.若关于x的一元二次方程为ax2+bx+5=0(a≠0)的解是x=1,则2014﹣a﹣b的值是()A.2019B.2009C.2015D.2013【考点】一元二次方程的解.【分析】已知了一元二次方程的一个实数根,可将其代入该方程中,即可求出b的值.【解答】解:∵一元二次方程为ax2+bx+5=0(a≠0)的解是x=1,∴a+b+5=0,即a+b=﹣5,∴2014﹣a﹣b=2014﹣(a+b)=2014﹣(﹣5)=2019,故选A.9.二次函数y=ax2+bx+c图象上部分点的坐标满足下表:x…﹣3﹣2﹣101…y…﹣3﹣2﹣3﹣6﹣11…则该函数图象的顶点坐标为()A.(﹣3,﹣3)B.(﹣2,﹣2)C.(﹣1,﹣3)D.(0,﹣6)【考点】二次函数的性质.【分析】根据二次函数的对称性确定出二次函数的对称轴,然后解答即可.【解答】解:∵x=﹣3和﹣1时的函数值都是﹣3相等,∴二次函数的对称轴为直线x=﹣2,∴顶点坐标为(﹣2,﹣2).故选:B.10.如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,若∠B=60°,则∠1的度数是()A.15°B.25°C.10°D.20°【考点】旋转的性质.【分析】先利用互余计算出∠BAC=90°﹣∠B=30°,再根据旋转的性质得∠ACA′=90°,CA=CA′,∠CA′B′=∠CAB=30°,则可判断△ACA′为等腰直角三角形,则∠CA′A=45°,然后利用∠1=∠CA′A﹣∠CA′B′进行计算即可.【解答】解:∵∠ACB=90°,∠B=60°,∴∠BAC=90°﹣∠B=30°,∵Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,∴∠ACA′=90°,CA=CA′,∠CA′B′=∠CAB=30°,∴△ACA′为等腰直角三角形,∴∠CA′A=45°,∴∠1=∠CA′A﹣∠CA′B′=45°﹣30°=15°.故选A.11.如图,动点P从点A出发,沿线段AB运动至点B后,立即按原路返回.点P在运动过程中速度大小不变.则以点A为圆心,线段AP长为半径的圆的面积S与点P的运动时间t之间的函数图象大致为()A.B.C.D.【考点】动点问题的函数图象.【分析】本题考查了动点问题的函数图象.【解答】解:设点P的速度是1,则AP=t,
本文标题:德阳市绵竹市2016届九年级上期末数学试卷含答案解析
链接地址:https://www.777doc.com/doc-7838197 .html