您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 德州市夏津县2015-2016年八年级上抽测数学试卷含答案解析
山东省德州市夏津县2015-2016学年八年级(上)抽测数学试卷(12月份)一、选择题(每小题3分,共30分)1.下列亚运会会徽中的图案,不是轴对称图形的是()A.B.C.D.2.下列计算正确的是()A.a2+a2=a4B.a2•a3=a6C.(﹣a2)2=a4D.(a+1)2=a2+13.如图,为估计池塘岸边A、B的距离,小方在池塘的一侧选取一点O,测得OA=15米,OB=10米,A、B间的距离不可能是()A.20米B.15米C.10米D.5米4.下列各图中,正确画出AC边上的高的是()A.B.C.D.5.如果等腰三角形的一个外角等于110°,则它的顶角是()A.40°B.55°C.70°D.40°或70°6.图中全等的三角形是()A.Ⅰ和ⅡB.Ⅱ和ⅣC.Ⅱ和ⅢD.Ⅰ和Ⅲ7.下列多边形材料中,不能单独用来铺满地面的是()A.三角形B.四边形C.正五边形D.正六边形8.如图,在△ABC中,AB=AC,BD=BC,AD=DE=EB,则∠A是()A.30°B.45°C.60°D.20°9.如图,∠C=90°,AD平分∠BAC交BC于D,若BC=5cm,BD=3cm,则点D到AB的距离为()A.5cmB.3cmC.2cmD.不能确定10.一个多边形内角和是1080°,则这个多边形的对角线条数为()A.26B.24C.22D.20二、填空题(每小题4分,满分24分)11.计算:﹣2x(x﹣2)=.12.若32×83=2n,则n=.13.(﹣)2015×32016=.14.如图,已知∠1=∠2,请你添加一个条件:,使△ABD≌△ACD.15.如图,在△ABC中,点D是BC上一点,∠BAD=80°,AB=AD=DC,则∠C=度.16.如图,C为线段AE上一动点(不与点A、E重合),在AE同侧分别作正△ABC和正△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.以下五个结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°.恒成立的结论有.(把你认为正确的序号都填上)三、解答题(共46分)17..18.先化简,再求值:(x﹣1)(x﹣2)﹣3x(x+3)+2(x+2)(x﹣1),其中x=.19.如图,已知E在AB上,∠1=∠2,∠3=∠4,那么AC等于AD吗?为什么?20.如图已知,AB∥DC,AB=DC,AE=CF.求证:△ABF≌△CDE.21.如图,E在△ABC的AC边的延长线上,D点在AB边上,DE交BC于点F,DF=EF,BD=CE,求证:△ABC是等腰三角形.22.探究与应用(1)问题如图1,在四边形ABCD中,点P为AB上一点,AD=BP,∠A=∠B=∠DPC=90°,求证:△ADP≌△BPC.(2)探究如图2,在四边形ABCD中,点P为AB上一点,AD=BP,∠A=∠B=∠DPC=θ时,上述结论是否依然成立?说明理由.(3)应用请利用(1)(2)获得的经验解决问题:图3,在△ABD中,AB=6,AD=BD=BP=5,且满足∠A=∠DPC,求DC的长.2015-2016学年山东省德州市夏津县八年级(上)抽测数学试卷(12月份)参考答案与试题解析一、选择题(每小题3分,共30分)1.下列亚运会会徽中的图案,不是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的定义求解.【解答】解:A、不是轴对称图形,故本选项正确;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选A.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.下列计算正确的是()A.a2+a2=a4B.a2•a3=a6C.(﹣a2)2=a4D.(a+1)2=a2+1【考点】完全平方公式;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据同类项、同底数幂的乘法、幂的乘方和完全平方公式计算即可.【解答】解:A、a2+a2=2a2,错误;B、a2•a3=a5,错误;C、(﹣a2)2=a4,正确;D、(a+1)2=a2+2a+1,错误;故选C.【点评】此题考查同类项、同底数幂的乘法、幂的乘方和完全平方公式,关键是根据法则进行计算.3.如图,为估计池塘岸边A、B的距离,小方在池塘的一侧选取一点O,测得OA=15米,OB=10米,A、B间的距离不可能是()A.20米B.15米C.10米D.5米【考点】三角形三边关系.【专题】应用题.【分析】根据三角形的三边关系,第三边的长一定大于已知的两边的差,而小于两边的和,求得相应范围,看哪个数值不在范围即可.【解答】解:∵15﹣10<AB<10+15,∴5<AB<25.∴所以不可能是5米.故选:D.【点评】已知三角形的两边,则第三边的范围是:>已知的两边的差,而<两边的和.4.下列各图中,正确画出AC边上的高的是()A.B.C.D.【考点】三角形的角平分线、中线和高.【专题】图表型.【分析】根据三角形高的定义,过点B与AC边垂直,且垂足在边AC上,然后结合各选项图形解答.【解答】解:根据三角形高线的定义,只有D选项中的BE是边AC上的高.故选:D.【点评】本题主要考查了三角形的高线的定义,熟记定义并准确识图是解题的关键.5.如果等腰三角形的一个外角等于110°,则它的顶角是()A.40°B.55°C.70°D.40°或70°【考点】等腰三角形的性质.【分析】题目给出了一个外角等于110°,没说明是顶角还是底角的外角,所以要分两种情况进行讨论.【解答】解:(1)当110°角为顶角的外角时,顶角为180°﹣110°=70°;(2)当110°为底角的外角时,底角为180°﹣110°=70°,顶角为180°﹣70°×2=40°;故选D.【点评】本题考查了等腰三角形的性质;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.6.图中全等的三角形是()A.Ⅰ和ⅡB.Ⅱ和ⅣC.Ⅱ和ⅢD.Ⅰ和Ⅲ【考点】全等三角形的判定.【分析】仔细观察图形,验证各选项给出的条件是否符合全等的判定方法,符合的是全等的不符合的则不全等,题目中D选项的两个三角形符合SAS,是全等的三角形,其它的都不能得到三角形全等.【解答】解:A选项中条件不满足SAS,不能判定两三角形全等;B选项中条件对应边不相等,不能判定两三角形全等;C选项中条件不满足SAS,不能判定两三角形全等;D选项中条件满足SAS,能判定两三角形全等.故选D.【点评】本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理.做题时要根据已知条件结合图形利用全等的判定方法逐个寻找.7.下列多边形材料中,不能单独用来铺满地面的是()A.三角形B.四边形C.正五边形D.正六边形【考点】平面镶嵌(密铺).【分析】由镶嵌的条件知,在一个顶点处各个内角和为360°.【解答】解:A、三角形内角和为180°,能整除360°,能密铺,故此选项不合题意;B、角形内角和为360°,能整除360°,能密铺,故此选项不合题意;C、正五边形每个内角是180°﹣360°÷5=108°,不能整除360°,不能密铺,故此选项合题意;D、正六边形每个内角为180°﹣360°÷6=120°,能整除360°,能密铺,故此选项不合题意;故选:C.【点评】此题主要考查了平面镶嵌,几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.8.如图,在△ABC中,AB=AC,BD=BC,AD=DE=EB,则∠A是()A.30°B.45°C.60°D.20°【考点】等腰三角形的性质.【分析】根据图中所示,设出所需求的未知量,再利用三角形角度之间的关系,表示出各个角,根据三角形内角和定理列出方程求解即可.【解答】解:设∠A=x,∵AD=DE,∴∠DEA=∠A=x,∵DE=EB,∴∠EBD=∠EDB=,∵∠BDC=∠A+∠DBA=x+=,∵AB=AC,BD=BC,∴∠C=∠BDC=∠ABC=,∵∠A+∠ABC+∠C=180°,即:x+=180°,∴x=45°,∴∠A=45°.故选B.【点评】此题主要考查等腰三角形的判定,三角形内角和定理及三角形外角的性质的综合运用.应用三角形内角和列出方程解题是很重要的方法,要熟练掌握.9.如图,∠C=90°,AD平分∠BAC交BC于D,若BC=5cm,BD=3cm,则点D到AB的距离为()A.5cmB.3cmC.2cmD.不能确定【考点】角平分线的性质.【分析】由已知条件进行思考,结合利用角平分线的性质可得点D到AB的距离等于D到AC的距离即CD的长,问题可解.【解答】解:∵∠C=90°,AD平分∠BAC交BC于D∴D到AB的距离即为CD长CD=5﹣3=2故选C.【点评】本题主要考查平分线的性质,由已知能够注意到D到AB的距离即为CD长是解决的关键.10.一个多边形内角和是1080°,则这个多边形的对角线条数为()A.26B.24C.22D.20【考点】多边形内角与外角;多边形的对角线.【分析】先根据多边形的内角和公式求出边数,然后根据对角线的条数的公式进行计算即可求解.【解答】解:设多边形的边数是n,则(n﹣2)•180°=1080°,解得n=8,∴多边形的对角线的条数是:==20.故选D.【点评】本题考查了多边形的内角和定理与多边形的对角线的条数的公式,熟记公式是解题的关键.二、填空题(每小题4分,满分24分)11.计算:﹣2x(x﹣2)=﹣2x2+4x.【考点】单项式乘多项式.【分析】直接利用单项式乘以多项式运算法则求出即可.【解答】解:﹣2x(x﹣2)=﹣2x2+4x.故答案为:﹣2x2+4x.【点评】此题主要考查了单项式乘以多项式,正确掌握运算法则是解题关键.12.若32×83=2n,则n=14.【考点】同底数幂的乘法.【专题】计算题.【分析】先将等式左边化为同底数幂的乘法,再根据同底数幂的乘法法则,同底数幂相乘,底数不变,指数相加,即am•an=am+n计算即可.【解答】解:∵32×83=2n,∴25×29=2n,即214=2n,∴n=14,故答案为14.【点评】主要考查同底数幂的乘法的性质,熟练掌握性质是解题的关键.13.(﹣)2015×32016=﹣3.【考点】幂的乘方与积的乘方.【分析】根据幂的乘方和积的乘方的运算法则求解.【解答】解:原式=(﹣×3)2015×3=﹣3.故答案为:﹣3.【点评】本题考查了幂的乘方和积的乘方,解答本题的关键是掌握幂的乘方和积的乘方的运算法则.14.如图,已知∠1=∠2,请你添加一个条件:∠B=∠C或∠BAD=∠CAD或BD=CD,使△ABD≌△ACD.【考点】全等三角形的判定.【专题】开放型.【分析】∠1、∠2分别是△ADB、△ADC的外角,由∠1=∠2可得∠ADB=∠ADC,然后根据判定定理AAS、ASA、SAS尝试添加条件.【解答】解:添加∠B=∠C,可用AAS判定两个三角形全等;添加∠BAD=∠CAD,可用ASA判定两个三角形全等;添加BD=CD,可用SAS判定两个三角形全等.故填∠B=∠C或∠BAD=∠CAD或BD=CD.【点评】本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关健.15.如图,在△ABC中,点D是BC上一点,∠BAD=80°,AB=AD=DC,则∠C=25度.【考点】三角形的外角性质;三角形内角和定理.【专题】压轴题.【分析】本题考查的是三角形内角和定理,三角形外角与外角性质以及等腰三角形的性质.由AB=AD=DC可得∠DAC=∠C,易求解.【解答】解:∵∠BAD=80°,AB=AD=DC,∴∠ABD=∠ADB=50°,由三角形外角与外角性质可得∠ADC=180°﹣∠ADB=130°,又∵AD=DC,∴∠C=∠DAC=(180°﹣∠
本文标题:德州市夏津县2015-2016年八年级上抽测数学试卷含答案解析
链接地址:https://www.777doc.com/doc-7838203 .html