您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 抚州市2016-2017学年八年级上第一次月考数学试卷含答案解析
江西省抚州市2016-2017学年八年级(上)第一次月考数学试卷(解析版)一、选择题(本大题共6小题,共18分)1.化简:的值为()A.4B.﹣4C.±4D.162.下列四个数中,是无理数的是()A.B.C.D.()23.“的平方根是±”用数学式表示为()A.=±B.=C.±=±D.﹣=﹣4.如图,直角三角形三边向形外作了三个正方形,其中数字表示该正方形的面积,那么正方形A的面积是()A.360B.164C.400D.605.已知直角三角形两边的长分别为5、12,则第三边的长为()A.13B.60C.17D.13或6.如图数轴上有O,A,B,C,D五点,根据图中各点所表示的数,判断在数轴上的位置会落在下列哪一线段上()A.OAB.ABC.BCD.CD二、填空题(本大题共6小题,共18分)7.试写出两个无理数和,使它们的和为﹣6.8.计算:|3.14﹣π|=.9.面积为37cm2的正方体的棱长为cm.10.已知两条线段的长分别为和,当第三条线段的长取时,这三条线段能围成一个直角三角形.11.观察下列各式:2×=,3×=,4×=,…,则依次第五个式子是.12.如图,在长方形ABCD中,边AB的长为3,AD的长为2,AB在数轴上,以原点A为圆心,AC的长为半径画弧,交负半轴于一点,则这个点表示的实数是.三、计算题(本大题共5小题,共30分)13.计算:﹣+.14.计划用100块地板砖来铺设面积为16平方米的客厅,求所需要的正方形地板砖的边长.15.如图,某住宅小区在施工过程中留下了一块空地(图中的四边形ABCD),经测量,在四边形ABCD中,AB=3m,BC=4m,CD=12m,DA=13m,∠B=90°.(1)△ACD是直角三角形吗?为什么?(2)小区为美化环境,欲在空地上铺草坪,已知草坪每平方米100元,试问铺满这块空地共需花费多少元?16.如图是一块地,已知AD=8cm,CD=6cm,∠D=90°,AB=26cm,BC=24cm,求这块地的面积.17.如图,在一块用边长为20cm的地砖铺设的广场上,一只飞来的鸽子落在A点处,鸽子吃完小朋友洒在B、C处的鸟食,最少需要走多远?四、解答题(本大题共4小题,共32分)18.已知3a+b﹣1的立方根是3,2a+1的算术平方根是5,求a+b的平方根.19.如图所示,一根长2.5米的木棍(AB),斜靠在与地面(OM)垂直的墙(ON)上,此时OB的距离为0.7米,设木棍的中点为P.若木棍A端沿墙下滑,且B端沿地面向右滑行.(1)如果木棍的顶端A沿墙下滑0.4米,那么木棍的底端B向外移动多少距离?(2)请判断木棍滑动的过程中,点P到点O的距离是否变化,并简述理由.20.如图,在一棵树的10m高B处有2只猴子,一只猴子爬到树下走到离树20m处的池塘A处,另一只爬到树顶D后直接跳跃到A处,距离以直线计算,如果两只猴子所经过的距离相等,求这棵树高.21.在边长为1的网格纸内分别画边长为,,的三角形,并计算其面积.五、解答题(本大题共1小题,共10分)22.a,b,c为三角形ABC的三边,且满足a2+b2+c2+338=10a+24b+26c,试判别这个三角形的形状.六、解答题(本大题共1小题,共12分)23.在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边长分别为a、b、c,设△ABC的面积为S,周长为l.(1)填表:三边a、b、ca+b﹣c3、4、525、12、1348、15、176(2)如果a+b﹣c=m,观察上表猜想:=,(用含有m的代数式表示);(3)说出(2)中结论成立的理由.2016-2017学年江西省抚州市八年级(上)第一次月考数学试卷参考答案与试题解析一、选择题(本大题共6小题,共18分)1.化简:的值为()A.4B.﹣4C.±4D.16【考点】二次根式的性质与化简.【分析】表示16的算术平方根,根据二次根式的意义解答即可.【解答】解:原式==4.故选A.【点评】主要考查了二次根式的化简.注意最简二次根式的条件是:①被开方数的因数是整数,因式是整式;②被开方数中不含能开得尽方的因数因式.上述两个条件同时具备(缺一不可)的二次根式叫最简二次根式.2.下列四个数中,是无理数的是()A.B.C.D.()2【考点】无理数.【分析】根据无理数是无限不循环小数,可得答案.【解答】解:A、是无理数,,,()2是有理数,故选:A.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(2016秋•抚州校级月考)“的平方根是±”用数学式表示为()A.=±B.=C.±=±D.﹣=﹣【考点】平方根.【分析】根据平方根的定义,即可解答.【解答】解:“的平方根是±”用数学式表示为±=±.故选:C.【点评】本题考查了平方根的定义,解决本题的根据是熟记平方根的定义.4.如图,直角三角形三边向形外作了三个正方形,其中数字表示该正方形的面积,那么正方形A的面积是()A.360B.164C.400D.60【考点】勾股定理.【分析】要求正方形A的面积,则要知它的边长,而A正方形的边长是直角三角形的一直角边,利用另外两正方形的面积可求得该直角三角形的斜边和另一直角边,再用勾股定理可解.【解答】解:根据正方形的面积与边长的平方的关系得,图中直角三角形得A正方形的面积是1000﹣640=360,故选A.【点评】本题考查了直角三角形中勾股定理的运用,本题中根据勾股定理求斜边长的平方是解本题的关键.5.已知直角三角形两边的长分别为5、12,则第三边的长为()A.13B.60C.17D.13或【考点】勾股定理.【分析】本题已知直角三角形的两边长,但未明确这两条边是直角边还是斜边,因此两条边中的较长边12既可以是直角边,也可以是斜边,所以求第三边的长必须分类讨论,即12是斜边或直角边的两种情况,然后利用勾股定理求解.【解答】解:当12和5均为直角边时,第三边==13;当12为斜边,5为直角边,则第三边==,故第三边的长为13或.故选:D.【点评】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.6.如图数轴上有O,A,B,C,D五点,根据图中各点所表示的数,判断在数轴上的位置会落在下列哪一线段上()A.OAB.ABC.BCD.CD【考点】估算无理数的大小;实数与数轴.【分析】由于=4,<,所以应落在BC上.【解答】解:∵=4,<,∴3.6,所以应落在BC上.故选:C.【点评】本题主要考查了无理数的估算,此题主要考查了估算无理数的大小,可以直接估算所以无理数的值,也可以利用“夹逼法”来估算.二、填空题(本大题共6小题,共18分)7.试写出两个无理数π﹣2和﹣π﹣4,使它们的和为﹣6.【考点】实数的运算.【分析】写出两个无理数,使其之和为﹣6即可.【解答】解:根据题意得:π﹣2﹣4﹣π=﹣6;故答案为:π﹣2,﹣π﹣4【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.8.计算:|3.14﹣π|=π﹣3.14.【考点】实数的性质.【分析】根据差的绝对值是大数减小数,可得答案.【解答】解:|3.14﹣π|=π﹣3.14,故答案为:π﹣3.14.【点评】本题考查了实数的性质,差的绝对值是大数减小数.9.面积为37cm2的正方体的棱长为cm.【考点】算术平方根.【分析】可以设正方体的棱长是x,则可用x表示出正方体的面积,即可求得正方体的棱长.【解答】解:设正方形的棱长是x,则x2=37.解得:x=,故答案为:.【点评】本题主要考查了正方体的面积的计算方法,正确利用算术平方根的定义求解x的值,是解决本题的关键,难度一般.10.已知两条线段的长分别为和,当第三条线段的长取2或4时,这三条线段能围成一个直角三角形.【考点】勾股定理的逆定理.【分析】分两种情况考虑:若为斜边,不为斜边,利用勾股定理求出第三边即可.【解答】解:若为斜边,根据勾股定理得:第三边为=2;若不为斜边,根据勾股定理得:第三边为=4,则当第三条线段的长取2或4时,这三条线段能围成一个直角三角形.故答案为:2或4【点评】此题考查了勾股定理的逆定理,熟练掌握勾股定理的逆定理是解本题的关键.11.观察下列各式:2×=,3×=,4×=,…,则依次第五个式子是6×=.【考点】二次根式的性质与化简.【分析】观察一系列等式,得到一般性规律,即可确定出第五个式子.【解答】解:根据题意得:第五个式子为6×=.故答案为:6×=.【点评】此题考查了二次根式的性质与化简,弄清题中的规律是解本题的关键.12.如图,在长方形ABCD中,边AB的长为3,AD的长为2,AB在数轴上,以原点A为圆心,AC的长为半径画弧,交负半轴于一点,则这个点表示的实数是1﹣.【考点】实数与数轴.【分析】连接AC,先根据勾股定理求出AC的长,再由数轴上两点间的距离公式即可得出结论.【解答】解:连接AC,∵边AB的长为3,AD的长为2,∴AC===.∵A点为1,∴这个点表示的实数是1﹣.【点评】本题考查的是实数与数轴,熟知实数与数轴上各点是一一对应关系是解答此题的关键.三、计算题(本大题共5小题,共30分)13.计算:﹣+.【考点】实数的运算.【分析】原式利用二次根式性质,以及平方根定义计算即可得到结果.【解答】解:原式=2﹣8+=﹣.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.14.计划用100块地板砖来铺设面积为16平方米的客厅,求所需要的正方形地板砖的边长.【考点】二次根式的应用.【分析】设所需要的正方形地板砖的边长为a米,根据题意列方程,开平方求a的值,注意a的值为正数.【解答】解:设所需要的正方形地板砖的边长为a米,依题意,得100a2=16,即a2=0.16,解得a=0.4.答:所需要的正方形地板砖的边长为0.4米.【点评】本题考查了二次根式中求面积公式中的运用.关键是根据题意列方程,开平方运算,结果是边长为正数.15.如图,某住宅小区在施工过程中留下了一块空地(图中的四边形ABCD),经测量,在四边形ABCD中,AB=3m,BC=4m,CD=12m,DA=13m,∠B=90°.(1)△ACD是直角三角形吗?为什么?(2)小区为美化环境,欲在空地上铺草坪,已知草坪每平方米100元,试问铺满这块空地共需花费多少元?【考点】勾股定理的逆定理.【分析】(1)先在Rt△ABC中,利用勾股定理可求AC,在△ACD中,易求AC2+CD2=AD2,再利用勾股定理的逆定理可知△ACD是直角三角形,且∠ACD=90°;(2)分别利用三角形的面积公式求出△ABC、△ACD的面积,两者相加即是四边形ABCD的面积,再乘以100,即可求总花费.【解答】解:(1)在Rt△ABC中,∵AB=3m,BC=4m,∠B=90°,AB2+CB2=AC2∴AC=5cm,在△ACD中,AC=5cmCD=12m,DA=13m,∴AC2+CD2=AD2,∴△ACD是直角三角形,∠ACD=90°;(2)∵S△ABC=×3×4=6,S△ACD=×5×12=30,∴S四边形ABCD=6+30=36,费用=36×100=3600(元).【点评】本题考查勾股定理、勾股定理的逆定理的应用、三角形的面积公式.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.16.如图是一块地,已知AD=8cm,CD=6cm,∠D=90°,AB=26cm,BC=24cm,求这块地的面积.【考点】勾股定理;勾股定理的逆定理.【分析】根据勾股定理可求出AC的长,根据勾股定理的逆定理可求出∠ACB=90°,可求出△ACB的面积,减去△ACD的面积,可求出四边形ABCD的面积.【解答】解:如图,连接AC.∵CD=6cm,AD=8cm,∠ADC=90°,∴AC==10(cm).∵AB=26cm,BC=24cm,102+242=262.即AC2+BC2=AB2,∴△ABC为直角三角形,∠ACB=90°.∴四边形ABCD的面积=S△ABC﹣S△ACD=×10×24﹣×6×8=96(cm2).
本文标题:抚州市2016-2017学年八年级上第一次月考数学试卷含答案解析
链接地址:https://www.777doc.com/doc-7838511 .html