您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 赣州市赣县2016-2017学年八年级上期中数学试卷含答案解析
2016-2017学年江西省赣州市赣县八年级(上)期中数学试卷一.选择题(本题共6题,每小题3分,总共18分)1.下列图形是轴对称图形的有()A.2个B.3个C.4个D.5个2.如果一个三角形的两边长分别为2和4,则第三边长可能是()A.2B.4C.6D.83.如图,在四边形ABCD中,AB=AD,CB=CD,若连接AC、BD相交于点O,则图中全等三角形共有()A.1对B.2对C.3对D.4对4.如图,AC=CE,∠ACE=90°,AB⊥BD,ED⊥BD,AB=6cm,DE=2cm,则BD等于()A.6cmB.8cmC.10cmD.4cm5.如图:△ABC的周长为30cm,把△ABC的边AC对折,使顶点C和点A重合,折痕交BC边于点D,交AC边与点E,连接AD,若AE=4cm,则△ABD的周长是()A.22cmB.20cmC.18cmD.15cm6.如图,在△ABC中,已知点D、E、F分别是BC、AD、CE的中点,且S△ABC=4,S△BEF=()A.2B.1C.D.二.填空题(本题共6题,每小题3分,总共18分)7.若点P(m,m﹣1)在x轴上,点P关于y轴对称的点坐标为.8.一个多边形的每一个外角都等于36°,则该多边形的内角和等于度.9.如图:在△ABC和△FED中,AD=FC,AB=FE,当添加条件时,就可得到△ABC≌△FED.(只需填写一个即可)10.如图,等腰三角形ABC中AB=AC,∠A=20°,线段AB的垂直平分线交AB于点D,交AC于点E,连接BE,则∠CBE=.11.如图所示,点P为∠AOB内一点,分别作出P点关于OA、OB的对称点P1,P2,连接P1P2交OA于M,交OB于N,P1P2=15,则△PMN的周长为.12.用一条长16厘米的细绳围成一个等腰三角形,其中一边长为6厘米,则另外两边的长分别为.三、13.(6分)一个多边形的内角和比它的外角的和的2倍还大180°,求这个多边形的边数.14.(6分)如图所示,在△ABC中,∠A=90°,DE⊥BC,BD平分∠ABC,AD=6cm,BC=15cm,求:△BDC的面积.15.(6分)如图,点D、E在△ABC的BC边上,AB=AC,AD=AE.求证:BD=CE.16.(6分)如图:△ABC和△ADE是等边三角形,AD是BC边上的中线.求证:BE=BD.17.(6分)图(a)、图(b)是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1.请在图(a)、图(b)中,分别画出符合要求的图形,所画图形各顶点必须与方格纸中的小正方形顶点重合.具体要求如下:(1)画一个底边长为4,面积为8的等腰三角形;(2)画一个面积为16的等腰直角三角形.四、18.(8分)已知:如图,AB=CD,DE⊥AC,BF⊥AC,E,F是垂足,DE=BF.求证:(1)AF=CE;(2)AB∥CD.19.(8分)如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC边上,且BE=BD,连结AE、DE、DC.①求证:△ABE≌△CBD;②若∠CAE=30°,求∠BDC的度数.20.(8分)如图,点M、N分别是正五边形ABCDE的边BC、CD上的点,且BM=CN,AM交BN于点P.(1)求证:△ABM≌△BCN;(2)求∠APN的度数.21.(8分)如图,在等边三角形ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF⊥DE,交BC的延长线于点F.(1)求∠F的度数;(2)若CD=2,求DF的长.五、(本题10分)22.(10分)如图1,△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB、AC为直角边,向△ABC作等腰Rt△ABE和等腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q.(1)求证:△AEP≌△BAG;(2)试探究EP与FQ之间的数量关系,并证明你的结论;(3)如图2,若连接EF交GA的延长线于H,由(2)中的结论你能判断EH与FH的大小关系吗?并说明理由;六、(本题12分)23.(12分)如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.(1)如果点P在线段BC上以3cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,经过1s后,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?2016-2017学年江西省赣州市赣县八年级(上)期中数学试卷参考答案与试题解析一.选择题(本题共6题,每小题3分,总共18分)1.下列图形是轴对称图形的有()A.2个B.3个C.4个D.5个【考点】轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此对图中的图形进行判断.【解答】解:图(1)有一条对称轴,是轴对称图形,符合题意;图(2)不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;图(3)有二条对称轴,是轴对称图形,符合题意;图(3)有五条对称轴,是轴对称图形,符合题意;图(3)有一条对称轴,是轴对称图形,符合题意.故轴对称图形有4个.故选C.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.如果一个三角形的两边长分别为2和4,则第三边长可能是()A.2B.4C.6D.8【考点】三角形三边关系.【分析】已知三角形的两边长分别为2和4,根据在三角形中任意两边之和>第三边,任意两边之差<第三边;即可求第三边长的范围.【解答】解:设第三边长为x,则由三角形三边关系定理得4﹣2<x<4+2,即2<x<6.因此,本题的第三边应满足2<x<6,把各项代入不等式符合的即为答案.2,6,8都不符合不等式2<x<6,只有4符合不等式.故选B.【点评】本题考查了三角形三边关系,此题实际上就是根据三角形三边关系定理列出不等式,然后解不等式即可.3.如图,在四边形ABCD中,AB=AD,CB=CD,若连接AC、BD相交于点O,则图中全等三角形共有()A.1对B.2对C.3对D.4对【考点】全等三角形的判定.【分析】首先证明△ABC≌△ADC,根据全等三角形的性质可得∠BAC=∠DAC,∠BCA=∠DCA,再证明△ABO≌△ADO,△BOC≌△DOC.【解答】解:∵在△ABC和△ADC中,∴△ABC≌△ADC(SSS),∴∠BAC=∠DAC,∠BCA=∠DCA,∵在△ABO和△ADO中,∴△ABO≌△ADO(SAS),∵在△BOC和△DOC中,∴△BOC≌△DOC(SAS),故选:C.【点评】考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.4.如图,AC=CE,∠ACE=90°,AB⊥BD,ED⊥BD,AB=6cm,DE=2cm,则BD等于()A.6cmB.8cmC.10cmD.4cm【考点】全等三角形的判定与性质.【分析】由题中条件求出∠BAC=∠DCE,可得直角三角形ABC与CDE全等,进而得出对应边相等,即可得出结论.【解答】解:∵AB⊥BD,ED⊥BD,∴∠B=∠D=∠ACE=90°,∴∠BAC+∠ACB=90°,∠ACB+∠ECD=90°,∴∠BAC=∠ECD,∵在Rt△ABC与Rt△CDE中,,∴Rt△ABC≌Rt△CDE(AAS),∴BC=DE=2cm,CD=AB=6cm,∴BD=BC+CD=2+6=8cm,故选B.【点评】本题主要考查了全等三角形的判定及性质,应熟练掌握.5.如图:△ABC的周长为30cm,把△ABC的边AC对折,使顶点C和点A重合,折痕交BC边于点D,交AC边与点E,连接AD,若AE=4cm,则△ABD的周长是()A.22cmB.20cmC.18cmD.15cm【考点】翻折变换(折叠问题).【分析】由图形和题意可知AD=DC,AE=CE=4,AB+BC=22,△ABD的周长=AB+AD+BD=AB+CD+BC﹣CD=AB+BC,即可求出周长为22.【解答】解:∵AE=4cm,∴AC=8,∵△ABC的周长为30cm,∴AB+BC=22,∵△ABD的周长=AB+AD+BD,AD=DC,∴△ABD的周长=AB+AD+BD=AB+CD+BC﹣CD=AB+BC=22故选择A.【点评】本题主要考查翻折变换的性质、三角形的周长,关键在于求出AB+BC的长度.6.如图,在△ABC中,已知点D、E、F分别是BC、AD、CE的中点,且S△ABC=4,S△BEF=()A.2B.1C.D.【考点】三角形的面积.【分析】根据三角形的中线把三角形分成两个面积相等的三角形可得S△ABD=S△ABC,S△ACD=S△ABC,S△BDE=S△ABD,S△CDE=S△ACD,然后求出S△BCE=S△ABC,再根据S△BEF=S△BCE列式求解即可.【解答】解:∵点D是BC的中点,∴S△ABD=S△ABC,S△ACD=S△ABC,∵点E是AD的中点,∴S△BDE=S△ABD,S△CDE=S△ACD,∴S△BCE=S△BDE+S△CDE=(S△ABD+S△ACD)=S△ABC,∵点F是CE的中点,∴S△BEF=S△BCE=×S△ABC,=××4,=1.故选B.【点评】本题考查了三角形的面积,主要利用了三角形的中线把三角形分成两个面积相等的三角形,需熟记.二.填空题(本题共6题,每小题3分,总共18分)7.若点P(m,m﹣1)在x轴上,点P关于y轴对称的点坐标为(﹣1,0).【考点】关于x轴、y轴对称的点的坐标.【分析】直接利用x轴上点的坐标性质得出m的值,进而利用关于y轴对称的点坐标性质得出答案.【解答】解:∵点P(m,m﹣1)在x轴上,∴m﹣1=0,则m=1,故P(1,0),则点P关于y轴对称的点坐标为:(﹣1,0).故答案为:(﹣1,0).【点评】此题主要考查了x轴上点的坐标性质以及关于y轴对称的点坐标性质,得出m的值是解题关键.8.一个多边形的每一个外角都等于36°,则该多边形的内角和等于1440度.【考点】多边形内角与外角.【分析】任何多边形的外角和等于360°,可求得这个多边形的边数.再根据多边形的内角和等于(n﹣2)•180°即可求得内角和.【解答】解:∵任何多边形的外角和等于360°,∴多边形的边数为360°÷36°=10,∴多边形的内角和为(10﹣2)•180°=1440°.故答案为:1440.【点评】本题需仔细分析题意,利用多边形的外角和求出边数,从而解决问题.9.如图:在△ABC和△FED中,AD=FC,AB=FE,当添加条件BC=ED或∠A=∠F或AB∥EF时,就可得到△ABC≌△FED.(只需填写一个即可)【考点】全等三角形的判定.【分析】要得到△ABC≌△FED,现有条件为两边分别对应相等,找到全等已经具备的条件,根据全等的判定方法选择另一条件即可得等答案.【解答】解:AD=FC⇒AC=FD,又AB=EF,加BC=DE就可以用SSS判定△ABC≌△FED;加∠A=∠F或AB∥EF就可以用SAS判定△ABC≌△FED.故答案为:BC=ED或∠A=∠F或AB∥EF.【点评】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.10.如图,等腰三角形ABC中AB=AC,∠A=20°,线段AB的垂直平分线交AB于点D,交AC于点E,连接BE,则∠CBE=60°.【考点
本文标题:赣州市赣县2016-2017学年八年级上期中数学试卷含答案解析
链接地址:https://www.777doc.com/doc-7838566 .html