您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 河南省郑州市2016-2017学年八年级上期末数学试卷含答案解析
河南省郑州市2016-2017学年八年级(上)期末数学试卷(解析版)一、选择题1.直角三角形的两条直角边长分别是3,4,则该直角三角形的斜边长是()A.2B.3C.4D.52.在实数﹣,0,π,,1.41中,无理数有()A.4个B.3个C.2个D.1个3.如图,下列条件不能判断直线a∥b的是()A.∠1=∠4B.∠3=∠5C.∠2+∠5=180°D.∠2+∠4=180°4.在某校冬季运动会上,有15名选手参加了200米预赛,取前八名进入决赛.已知参赛选手成绩各不相同,某选手要想知道自己是否进入决赛,除了知道自己的成绩外,还需要了解全部成绩的()A.平均数B.中位数C.众数D.方差5.如果所示,若点E的坐标为(﹣2,1),点F的坐标为(1,﹣1),则点G的坐标为()A.(1,2)B.(2,2)C.(2,1)D.(1,1)6.下列命题中,真命题有()①两条平行直线被第三条直线所截,内错角相等;②两边分别相等且其中一组等边的对角也相等的两个三角形全等;③三角形对的一个外角大于任何一个内角;④如果a2=b2,那么a=b.A.1个B.2个C.3个D.4个7.如图,在平面直角坐标系中,点A(2,m)在第一象限,若点A关于x轴的对称点B在直线y=﹣x+1上,则m的值为()A.﹣1B.1C.2D.38.八年级1班生活委员小华去为班级购买两种单价分别为8元和10元的盆栽,共有100元,若小华将100元恰好用完,共有几种购买方案()A.2B.3C.4D.59.如图,正方形ABCD的边长为2,动点P从C出发,在正方形的边上沿着C⇒B⇒A的方向运动(点P与A不重合).设P的运动路程为x,则下列图象中△ADP的面积y关于x的函数关系()A.B.C.D.10.如图,把长方形纸片ABCD折叠,使其对角顶点C与A重合.若长方形的长BC为8,宽AB为4,则折痕EF的长度为()A.5B.3C.2D.3二、填空题.11.化简:=.12.如图,AB∥CD,EF与AB,CD分别相交于点E,F,EP⊥EF,与∠EFD的角平分线FP相交于点P.若∠BEP=46°,则∠EPF=度.13.若x,y满足+(2x+3y﹣13)2=0,则2x﹣y的值为.14.平面直角坐标系内的一条直线同时满足下列两个条件:①不经过第四象限;②与两条坐标轴所围成的三角形的面积为2,这条直线的解析式可以是(写出一个解析式即可).15.如图,在平面直角坐标系xOy中,三角板的直角顶点P的坐标为(2,2),一条直角边与x轴的正半轴交于点A,另一直角边与y轴交于点B,三角板绕点P在坐标平面内转动的过程中,当△POA为等腰三角形时,请写出所有满足条件的点B的坐标.三、解答题(共55分)16.(6分)如图,小正方形的边长为1,△ABC的三个顶点都在小正方形的顶点处,判断△ABC的形状,并求出△ABC的面积.17.请写出一个二元一次方程组,使该方程组无解;(2)利用一次函数图象分析(1)中方程组无解的原因.18.(6分)建立一个平面直角坐标系.在坐标系中描出与x轴的距离等于3与y轴的距离等于4的所有点,并写出这些点之间的对称关系.19.(7分)为了迎接郑州市第二届“市长杯”青少年校园足球超级联赛,某学校组织了一次体育知识竞赛.每班选25名同学参加比赛,成绩分别为A、B、C、D四个等级,其中相应等级得分依次记为100分、90分、80分、70分.学校将八年级一班和二班的成绩整理并绘制成统计图,如图所示.(1)把一班竞赛成绩统计图补充完整;(2)写出下表中a、b、c的值:平均数(分)中位数(分)众数(分)方差一班ab90106.24二班87.680c138.24(3)根据(2)的结果,请你对这次竞赛成绩的结果进行分析.20.(8分)如图已知直线CB∥OA,∠C=∠OAB=100°,点E、点F在线段BC上,满足∠FOB=∠AOB=α,OE平分∠COF.(1)用含有α的代数式表示∠COE的度数;(2)若沿水平方向向右平行移动AB,则∠OBC:∠OFC的值是否发生变化?若变化找出变化规律;若不变,求其比值.21.(10分)在一条笔直的公路旁依次有A、B、C三个村庄,甲、乙两人同时分别从A、B两村出发,甲骑摩托车,乙骑电动车沿公路匀速驶向C村,最终到达C村.设甲、乙两人到C村的距离y1,y2(km)与行驶时间x(h)之间的函数关系如图所示,请回答下列问题:(1)A、C两村间的距离为km,a=;(2)求出图中点P的坐标,并解释该点坐标所表示的实际意义;(3)乙在行驶过程中,何时距甲10km?22.(12分)正方形OABC的边长为2,其中OA、OC分别在x轴和y轴上,如图1所示,直线l经过A、C两点.(1)若点P是直线l上的一点,当△OPA的面积是3时,请求出点P的坐标;(2)如图2,坐标系xOy内有一点D(﹣1,2),点E是直线l上的一个动点,请求出|BE+DE|的最小值和此时点E的坐标.(3)若点D关于x轴对称,对称到x轴下方,直接写出|BE﹣DE|的最大值,并写出此时点E的坐标.2016-2017学年河南省郑州市八年级(上)期末数学试卷参考答案与试题解析一、选择题1.直角三角形的两条直角边长分别是3,4,则该直角三角形的斜边长是()A.2B.3C.4D.5【考点】勾股定理.【分析】利用勾股定理即可求解.【解答】解:由勾股定理得:斜边长==5.故选:D.【点评】本题考查了勾股定理,熟练掌握勾股定理是关键.2.在实数﹣,0,π,,1.41中,无理数有()A.4个B.3个C.2个D.1个【考点】无理数.【分析】无理数常见的三种类型(1)开不尽的方根;(2)特定结构的无限不循环小数,如0.303003000300003…(两个3之间依次多一个0).(3)含有π的绝大部分数,如2π.注意:判断一个数是否为无理数,不能只看形式,要看化简结果.【解答】解:﹣是有理数;0是有理数;π是无理数;是无理数;1.41是有数.故选:C.【点评】本题主要考查的是无理数的概念,熟练掌握无理数的常见三种类型是解题的关键.3.如图,下列条件不能判断直线a∥b的是()A.∠1=∠4B.∠3=∠5C.∠2+∠5=180°D.∠2+∠4=180°【考点】平行线的判定.【分析】要判断直线a∥b,则要找出它们的同位角、内错角相等,同旁内角互补.【解答】解:A、能判断,∠1=∠4,a∥b,满足内错角相等,两直线平行.B、能判断,∠3=∠5,a∥b,满足同位角相等,两直线平行.C、能判断,∠2=∠5,a∥b,满足同旁内角互补,两直线平行.D、不能.故选D.【点评】解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.4.在某校冬季运动会上,有15名选手参加了200米预赛,取前八名进入决赛.已知参赛选手成绩各不相同,某选手要想知道自己是否进入决赛,除了知道自己的成绩外,还需要了解全部成绩的()A.平均数B.中位数C.众数D.方差【考点】统计量的选择.【分析】中位数是一组数据最中间一个数或两个数据的平均数;15人成绩的中位数是第8名的成绩.参赛选手要想知道自己是否能进入前8名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【解答】解:由于总共有15个人,且他们的分数互不相同,第8的成绩是中位数,所以要判断是否进入前8名,只需要了解自己的成绩以及全部成绩的中位数.故选B.【点评】本题主要考查统计的有关知识,主要包括平均数、中位数、众数的意义.反映数据集中程度的统计量有平均数、中位数、众数等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.5.如果所示,若点E的坐标为(﹣2,1),点F的坐标为(1,﹣1),则点G的坐标为()A.(1,2)B.(2,2)C.(2,1)D.(1,1)【考点】点的坐标.【分析】根据点F的坐标确定向左一个单位,向上一个单位为坐标原点建立平面直角坐标系,然后写出点G的坐标即可.【解答】解:建立平面直角坐标系如图所示,点G的坐标为(1,2).故选A.【点评】本题考查了点的坐标,根据已知点的坐标准确确定出坐标原点的位置是解题的关键.6.下列命题中,真命题有()①两条平行直线被第三条直线所截,内错角相等;②两边分别相等且其中一组等边的对角也相等的两个三角形全等;③三角形对的一个外角大于任何一个内角;④如果a2=b2,那么a=b.A.1个B.2个C.3个D.4个【考点】命题与定理.【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:①两条平行直线被第三条直线所截,内错角相等,正确;②两边分别相等且其中一组等边的对角也相等的两个三角形全等,不正确;③三角形对的一个外角大于任何一个内角,不正确;④如果a2=b2,那么a=b,不正确,例如(﹣1)2=12,但﹣1≠1;则真命题有1个;故选A.【点评】此题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.7.如图,在平面直角坐标系中,点A(2,m)在第一象限,若点A关于x轴的对称点B在直线y=﹣x+1上,则m的值为()A.﹣1B.1C.2D.3【考点】一次函数图象上点的坐标特征;关于x轴、y轴对称的点的坐标.【分析】根据关于x轴的对称点的坐标特点可得B(2,﹣m),然后再把B点坐标代入y=﹣x+1可得m的值.【解答】解:∵点A(2,m),∴点A关于x轴的对称点B(2,﹣m),∵B在直线y=﹣x+1上,∴﹣m=﹣2+1=﹣1,m=1,故选:B.【点评】此题主要考查了关于x轴对称点的坐标,以及一次函数图象上点的坐标特点,关键是掌握凡是函数图象经过的点必能使解析式左右相等.8.八年级1班生活委员小华去为班级购买两种单价分别为8元和10元的盆栽,共有100元,若小华将100元恰好用完,共有几种购买方案()A.2B.3C.4D.5【考点】二元一次方程的应用.【分析】利用二元一次方程的解法进而分别代入正整数求出即可.【解答】解:设购买单价为8元的盆栽x盆,购买单价为10元的盆栽y盆,根据题意可得:8x+10y=100,当x=10,y=2,当x=5,y=6,故符合题意的有2种,故选:A【点评】此题主要考查了二元一次方程的应用,正确得出等量关系是解题关键.9.如图,正方形ABCD的边长为2,动点P从C出发,在正方形的边上沿着C⇒B⇒A的方向运动(点P与A不重合).设P的运动路程为x,则下列图象中△ADP的面积y关于x的函数关系()A.B.C.D.【考点】动点问题的函数图象.【分析】△ADP的面积可分为两部分讨论,由C运动到B时,面积不变;由B运动到A时,面积逐渐减小,因此对应的函数应为分段函数.【解答】解:当P点由C运动到B点时,即0≤x≤2时,y==2当P点由B运动到A点时(点P与A不重合),即2<x<4时,y==4﹣x∴y关于x的函数关系注:图象不包含x=4这个点.故选:C.【点评】本题考查了动点函数图象问题,在图象中应注意自变量的取值范围.10.如图,把长方形纸片ABCD折叠,使其对角顶点C与A重合.若长方形的长BC为8,宽AB为4,则折痕EF的长度为()A.5B.3C.2D.3【考点】翻折变换(折叠问题);矩形的性质.【分析】过F点作FH⊥AD于H,在Rt△EHF中根据勾股定理可求出EF的长.【解答】解:过F点作FH⊥AD于H,设CF=x,则BF=8﹣x,在Rt△ABF中,AB2+BF2=AF2,∴16+(8﹣x)2=x2,解得:x=5,∴CF=5,FH=4,EH=AE﹣AH=2,∴EF2=42+22=20,∴EF=2;故选C【点评】本题主要考查了折叠的性质、勾股定理,灵活运用折叠的性质、勾股定理等几何知识点来分析、判断、推理是解题的关键.二、填空题.11.化简:=3.【考点】算术平方根.【分析】根据算术平方根的定义求出即可.【解答】解:=3.故答案为:3.【点评】此题主要考查了算术平方根的定义,是基础题型,比较简单.12.如图,AB∥CD,EF与AB,CD分别相交于点E,F,EP⊥EF,与∠EFD的角平分线FP相交于点P.若∠BEP=46°,则∠EPF=68度.【考点】平行线的性质
本文标题:河南省郑州市2016-2017学年八年级上期末数学试卷含答案解析
链接地址:https://www.777doc.com/doc-7838974 .html