您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 黄冈市英才学校2016-2017年八年级上期中数学试卷含答案解析
2016-2017学年湖北省黄冈市英才学校八年级(上)期中数学试卷一.选择题1.如图,图中的图形是常见的安全标记,其中是轴对称图形的是()A.B.C.D.2.若等腰三角形的一边长等于5,另一边长等于3,则它的周长等于()A.10B.11C.13D.11或133.小芳有两根长度为4cm和9cm的木条,她想钉一个三角形木框,桌上有下列长度的几根木条,她应该选择长度为()的木条.A.5cmB.3cmC.17cmD.12cm4.下列各项中是轴对称图形,而且对称轴最多的是()A.等腰梯形B.等腰直角三角形C.等边三角形D.直角三角形5.若△MNP≌△MNQ,且MN=8,NP=7,PM=6,则MQ的长为()A.8B.7C.6D.56.等腰三角形的底角为40°,则这个等腰三角形的顶角为()A.40°B.80°C.100°D.100°或40°7.如图,已知在△ABC中,AB=AC,∠BAC和∠ACB的平分线相交于D点,∠ADC=130°,那么∠CAB的大小是()A.80°B.50°C.40°D.20°8.如图,∠DAE=∠ADE=15°,DE∥AB,DF⊥AB,若AE=8,则DF等于()A.5B.4C.3D.29.以下叙述中不正确的是()A.等边三角形的每条高线都是角平分线和中线B.有一内角为60°的等腰三角形是等边三角形C.等腰三角形一定是锐角三角形D.在一个三角形中,如果两条边不相等,那么它们所对的角也不相等;反之,如果两个角不相等,那么它们所对的边也不相等10.如图,∠ABC=∠ACB,AD、BD、CD分别平分△ABC的外角∠EAC、内角∠ABC、外角∠ACF.以下结论:①AD∥BC;②∠ACB=2∠ADB;③∠ADC=90°﹣∠ABD;④∠BDC=∠BAC.其中正确的结论有()A.2个B.3个C.4个D.1个二.填空题11.若n边形内角和为900°,则边数n=.12.点P(1,﹣1)关于x轴对称的点的坐标为P′.13.等腰三角形的两边长分别是4cm和8cm,则它的周长是.14.若正多边形的一个内角等于140°,则这个正多边形的边数是.15.若等腰三角形的周长为26cm,一边为11cm,则腰长为.16.在Rt△ABC中,已知∠C=90°,∠B=60°,BC=2.3,那么∠A=,AB=.17.等腰三角形一腰上的高与腰长之比是1:2,则该三角形的顶角的度数是.18.当三角形中一个内角α是另一个内角β的一半时,我们称此三角形为“半角三角形”,其中α称为“半角”.如果一个“半角三角形”的“半角”为20°,那么这个“半角三角形”的最大内角的度数为.三、解答题(共66分19.(8分)如图,写出△ABC的各顶点坐标,并画出△ABC关于y轴对称的△A1B1C1,写出△ABC关于X轴对称的△A2B2C2的各点坐标.20.(8分)已知:如图,C为BE上一点,点A,D分别在BE两侧,AB∥ED,AB=CE,BC=ED,求证:AC=CD.21.(8分)如图,在△ABC中,D是BC边上一点,AD=BD,AB=AC=CD,求∠BAC的度数.22.(9分)如图,△ABC是等边三角形,BD是中线,延长BC至E,CE=CD,(1)求证:DB=DE.(2)在图中过D作DF⊥BE交BE于F,若CF=4,求△ABC的周长.23.(9分)如图,在△ABE中,AD⊥BE于D,C是BE上一点,BD=DC,且点C在AE的垂直平分线上,若△ABC的周长为22cm,求DE的长.24.(12分)如图,在等边△ABC中,点D,E分别在边BC,AB上,且BD=AE,AD与CE交于点F.(1)求证:AD=CE;(2)求∠DFC的度数.25.(12分)Rt△ABC中,∠ABC=90°,在直线AB上取一点M,使AM=BC,过点A作AE⊥AB且AE=BM,连接EC,再过点A作AN∥EC,交直线CM、CB于点F、N.(1)如图1,若点M在线段AB边上时,求∠AFM的度数;(2)如图2,若点M在线段BA的延长线上时,且∠CMB=15°,求∠AFM的度数.2016-2017学年湖北省黄冈市英才学校八年级(上)期中数学试卷参考答案与试题解析一.选择题1.如图,图中的图形是常见的安全标记,其中是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此对常见的安全标记图形进行判断.【解答】解:A、有一条对称轴,是轴对称图形,符合题意;B、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;C、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;D、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意.故选A.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.若等腰三角形的一边长等于5,另一边长等于3,则它的周长等于()A.10B.11C.13D.11或13【考点】等腰三角形的性质.【分析】由若等腰三角形的一边长等于5,另一边长等于3,分别从腰长为5,底边长为3与底边长为3,腰长为5去分析求解即可求得答案.【解答】解:若腰长为5,底边长为3,∵5+3>5,∴5,5,3能组成三角形,则它的周长等于:5+5+3=13,若底边长为3,腰长为5,∵3+3=6>5,∴3,3,5能组成三角形.∴它的周长为11或13.故选D.【点评】此题考查了等腰三角形的性质.此题难度不大,注意掌握分类讨论思想的应用.3.小芳有两根长度为4cm和9cm的木条,她想钉一个三角形木框,桌上有下列长度的几根木条,她应该选择长度为()的木条.A.5cmB.3cmC.17cmD.12cm【考点】三角形三边关系.【分析】根据三角形两边之和大于第三边,三角形的两边差小于第三边用排除法即可得出答案.【解答】解:对A,∵4+5=9,不符合三角形两边之和大于第三边,故错误;对B,∵4+3<9,不符合三角形两边之和大于第三边,故错误;对C,∵4+9<17,不符合三角形两边之和大于第三边,故错误;对D,∵4+9>12,12﹣9<4,符合两边之和大于第三边,三角形的两边差小于第三边,故正确;故选:D.【点评】本题考查了三角形三边关系,属于基础题,关键是掌握三角形两边之和大于第三边,三角形的两边差小于第三边.4.下列各项中是轴对称图形,而且对称轴最多的是()A.等腰梯形B.等腰直角三角形C.等边三角形D.直角三角形【考点】轴对称图形;等腰三角形的性质;等边三角形的性质;直角三角形的性质.【分析】根据轴对称图形的概念:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.据此作答.【解答】解:A、等腰梯形是轴对称图形,有一条对称轴;B、等腰直角三角形是轴对称图形,有一条对称轴;C、等边三角形是轴对称图形,有三条对称轴;D、直角三角形不一定是轴对称图形.则对称轴最多的是等边三角形.故选C.【点评】考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.同时要熟记一些常见图形的对称轴条数.5.若△MNP≌△MNQ,且MN=8,NP=7,PM=6,则MQ的长为()A.8B.7C.6D.5【考点】全等三角形的性质.【分析】根据△MNP≌△MNQ可得MP=MQ,已知PM=6,即可得解.【解答】解:∵△MNP≌△MNQ,∴MP=MQ,已知PM=6,∴MQ=6.故选C.【点评】本题考查了全等三角形的性质,熟练找出两个全等三角形的对应边是解此题的关键.6.等腰三角形的底角为40°,则这个等腰三角形的顶角为()A.40°B.80°C.100°D.100°或40°【考点】等腰三角形的性质.【分析】等腰三角形的底角为40°,则顶角为180°﹣40°﹣40°=100°.【解答】解:∵等腰三角形的底角为40°,∴另一底角也为40°,∴顶角为180°﹣40°﹣40°=100°.故选C.【点评】本题运用了等腰三角形“等边对等角”的性质,并联系三角形的内角定理求解有关角的度数问题.7.如图,已知在△ABC中,AB=AC,∠BAC和∠ACB的平分线相交于D点,∠ADC=130°,那么∠CAB的大小是()A.80°B.50°C.40°D.20°【考点】三角形内角和定理.【分析】设∠CAB=x,根据已知可以分别表示出∠ACD和∠DAC,再根据三角形内角和定理即可求得∠CAB的度数.【解答】解:设∠CAB=x∵在△ABC中,AB=AC∴∠B=∠ACB=(180°﹣x)∵CD是∠ACB的角平分线,AD是∠BAC的角平分线∴∠ACD=(180°﹣x),∠DAC=x∵∠ACD+∠DAC+∠ADC=180°∴(180°﹣x)+x+130°=180°∴x=20°故选D.【点评】此题主要考查三角形内角和定理:三角形内角和是180°.8.如图,∠DAE=∠ADE=15°,DE∥AB,DF⊥AB,若AE=8,则DF等于()A.5B.4C.3D.2【考点】三角形的外角性质;角平分线的性质;直角三角形斜边上的中线.【分析】过D作DG⊥AC于G,根据三角形的一个外角等于和它不相邻的两个内角的和求出∠DEG=30°,再根据直角三角形30°角所对的直角边等于斜边的一半求出DG的长度是4,又DE∥AB,所以∠BAD=∠ADE,所以AD是∠BAC的平分线,根据角平分线上的点到角的两边的距离相等,得DF=DG.【解答】解:如图,∵∠DAE=∠ADE=15°,∴∠DEG=∠DAE+∠ADE=15°+15°=30°,DE=AE=8,过D作DG⊥AC于G,则DG=DE=×8=4,∵DE∥AB,∴∠BAD=∠ADE,∴∠BAD=∠CAD,∵DF⊥AB,DG⊥AC,∴DF=DG=4.故选:B.【点评】本题主要考查三角形的外角性质,直角三角形30°角所对的直角边等于斜边的一半的性质,平行线的性质和角平分线上的点到角的两边的距离相等的性质,熟练掌握性质是解题的关键.9.以下叙述中不正确的是()A.等边三角形的每条高线都是角平分线和中线B.有一内角为60°的等腰三角形是等边三角形C.等腰三角形一定是锐角三角形D.在一个三角形中,如果两条边不相等,那么它们所对的角也不相等;反之,如果两个角不相等,那么它们所对的边也不相等【考点】等边三角形的性质.【分析】根据等边三角形的性质及判定对各个选项进行分析,从而得到答案.【解答】解:A,正确,符合等边三角形三线合一性质;B,正确,符合等边三角形的判定;C,不正确,也可能是钝角或等腰直角三角形;D,正确,符合等边对等角及等角对等边的性质.故选C.【点评】此题主要考查学生对等边三角形的判定及性质的理解及运用能力.10.如图,∠ABC=∠ACB,AD、BD、CD分别平分△ABC的外角∠EAC、内角∠ABC、外角∠ACF.以下结论:①AD∥BC;②∠ACB=2∠ADB;③∠ADC=90°﹣∠ABD;④∠BDC=∠BAC.其中正确的结论有()A.2个B.3个C.4个D.1个【考点】三角形的外角性质;平行线的判定与性质;三角形内角和定理.【分析】①由AD平分△ABC的外角∠EAC,求出∠EAD=∠DAC,由三角形外角得∠EAC=∠ACB+∠ABC,且∠ABC=∠ACB,得出∠EAD=∠ABC,利用同位角相等两直线平行得出结论正确.②由AD∥BC,得出∠ADB=∠DBC,再由BD平分∠ABC,所以∠ABD=∠DBC,∠ABC=2∠ADB,得出结论∠ACB=2∠ADB,③在△ADC中,∠ADC+∠CAD+∠ACD=180°,利用角的关系得∠ADC+∠CAD+∠ACD=∠ADC+2∠ABD+∠ADC=2∠ADC+2∠ABD=180°,得出结论∠ADC=90°﹣∠ABD;④由∠BAC+∠ABC=∠ACF,得出∠BAC+∠ABC=∠ACF,再与∠BDC+∠DBC=∠ACF相结合,
本文标题:黄冈市英才学校2016-2017年八年级上期中数学试卷含答案解析
链接地址:https://www.777doc.com/doc-7839182 .html