您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 惠州市惠城区2016届九年级上期末数学试卷含答案解析
2015-2016学年广东省惠州市惠城区九年级(上)期末数学试卷一.选择题(本大题共10个小题,每小题3分,共30分)1.下列图案是几种名车标志,其中属于中心对称图形的是()A.1个B.2个C.3个D.4个2.方程x(x﹣1)=0的根是()A.0B.1C.0或1D.无解3.抛物线y=﹣(x+2)2﹣1顶点坐标是()A.(2,﹣1)B.(2,1)C.(﹣2,﹣1)D.(﹣2,1)4.有一个正方体,6个面上分别标有1~6这6个整数,投掷这个正方体一次,则出现向上一面的数字为偶数的概率是()A.B.C.D.5.某果园第1年水果产量为100吨,第3年水果产量为144吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x,则根据题意可列方程为()A.144(1﹣x)2=100B.100(1﹣x)2=144C.144(1+x)2=100D.100(1+x)2=1446.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论:①ac<0;②a﹣b+c<0;③当x<0时,y<0;④方程ax2+bx+c=0(a≠0)有两个大于﹣1的实数根.其中正确的是()A.①②③B.①③④C.②③④D.①②④7.已知如图,一次函数y=ax+b和反比例函数y=的图象相交于A、B两点,使不等式ax+b>成立的自变量x的取值范围是()A.x<﹣1或x>4B.﹣1<x<4C.x<﹣1或0<x<4D.﹣1<x<0或x>48.如图,△ABC的边AC与⊙O相交于C、D两点,且经过圆心O,边AB与⊙O相切,切点为B.已知∠A=30°,则∠C的大小是()A.30°B.45°C.60°D.40°9.如图,将Rt△ABC绕点A按顺时针旋转一定角度得到Rt△ADE,点B的对应点D恰好落在BC边上.若AC=,∠B=60°,则CD的长为()A.0.5B.1.5C.D.110.一个圆锥的侧面展开图是半径为6的半圆,则这个圆锥的底面半径为()A.1.5B.2C.2.5D.3二.填空题(本大题共6个小题,每小题4分,共24分)11.已知反比例函数y=的图象经过点(2,﹣3),则此函数的关系式是.12.把抛物线y=﹣x2先向上平移2个单位,再向左平移3个单位,所得的抛物线是.13.一次聚会中每两人都握了一次手,所有人共握手15次,共有人参加聚会.14.在拼图游戏中,从图(1)的四张纸片中,任取两张纸片,能拼成“房子”如图(2)的概率为.15.如图,把△ABC绕点C按顺时针方向旋转35°,得到△A′B′C,A′B′交AC于点D.若∠A′DC=90°,则∠A=.16.如图,Rt△ABC中,∠C=90°,若AC=4,BC=3,则△ABC的内切圆半径r=.三.解答题(一)(本大题共3个小题,每小题6分,共18分)17.已知关于x的一元二次方程x2+kx﹣1=0一个根为﹣2,求另一个根和k的值.18.如图,方格纸中的每个小方格都是边长为1个单位的正方形.Rt△ABC的顶点均在格点上,建立平面直角坐标系后,点A的坐标为(﹣4,1),点B的坐标为(﹣1,1).(1)将Rt△ABC绕点O顺时针旋转90°后得到Rt△A′B′C′,试在图中画出图形Rt△Rt△A′B′C′,并写出C′的坐标;(2)求弧的长.19.如图,一座抛物线型拱桥,当水面宽AB为12m时,桥洞顶部离水面4m.若桥洞顶部离水面1m是警戒水位.求警戒水位时的水面宽度.三.解答题(二)(本大题共3个小题,每小题7分,共21分)20.把大小和形状完全相同的6张卡片分成两组,每组3张,分别标上1、2、3,将这两组卡片分别放入两个盒子中搅匀,再从中随机抽取一张.(1)试求取出的两张卡片数字之和为奇数的概率;(2)若取出的两张卡片数字之和为奇数,则甲胜;取出的两张卡片数字之和为偶数,则乙胜;试分析这个游戏是否公平?请说明理由.21.如图,AB是⊙O的直径,C是的中点,CE⊥AB于E,BD交CE于点F.(1)求证:CF=BF;(2)若CD=6,AC=8,求⊙O的半径.22.景泰特产专卖店销售杏脯,其进价为每千克40元,按每千克60元销售,平均每天可售出100千克.后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克.若该专卖店销售这种杏脯要想平均每天获利2240元,请回答:(1)每千克杏脯应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?三.解答题(三)(本大题共3个小题,每小题9分,共27分)23.已知反比例函数y=的图象的一支位于第二象限.(1)判断该函数图象的另一支所在的象限,并求m的取值范围;(2)如图,O为坐标原点,点M在该反比例函数位于第二象限的图象上,点N与点M关于x轴对称,若△OMN的面积为6,求m的值;(3)在(2)的条件下,当2<MN<4时,求线段OA的取值范围(直接写出结果)24.如图,点D在⊙O的直径AB的延长线上,点C在⊙O上,AC=CD,∠ACD=120°.(1)求证:CD是⊙O的切线;(2)若⊙O的半径为2,求图中阴影部分的面积.25.如图,抛物线经过点A(1,0),B(5,0),C(0,)三点,顶点为D,设点E(x,y)是抛物线上一动点,且在x轴下方.(1)求抛物线的解析式;(2)当点E(x,y)运动时,试求三角形OEB的面积S与x之间的函数关系式,并求出面积S的最大值?(3)在y轴上确定一点M,使点M到D、B两点距离之和d=MD+MB最小,求点M的坐标.2015-2016学年广东省惠州市惠城区九年级(上)期末数学试卷参考答案与试题解析一.选择题(本大题共10个小题,每小题3分,共30分)1.下列图案是几种名车标志,其中属于中心对称图形的是()A.1个B.2个C.3个D.4个【考点】中心对称图形.【分析】根据中心对称图形的定义:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形可得答案.【解答】解:第二、三个图形是中心对称图形的图案,故选B.【点评】此题主要考查了中心对称图形,关键是找出对称中心.2.方程x(x﹣1)=0的根是()A.0B.1C.0或1D.无解【考点】解一元二次方程-因式分解法.【专题】计算题.【分析】解一元二次方程时,需要把二次方程化为两个一元一次方程,此题可化为:x=0或x﹣1=0,解此两个一次方程即可.【解答】解:∵x(x﹣1)=0∴x=0或x﹣1=0∴x1=0,x2=1.故选C.【点评】此题虽不难,但是告诉了学生求解的一个方法,高次的要化为低次的,多元得要化为一元的.3.抛物线y=﹣(x+2)2﹣1顶点坐标是()A.(2,﹣1)B.(2,1)C.(﹣2,﹣1)D.(﹣2,1)【考点】二次函数的性质.【分析】根据抛物线的性质,即可得出结论.【解答】解:∵抛物线的解析式为y=﹣(x+2)2﹣1,∴抛物线的顶点为(﹣2,﹣1).故选C.【点评】本题考查了二次函数的性质中的抛物线的顶点式,解题的关键是牢记抛物线的性质.本题属于基础题型,解决此类题型最好的办法是熟悉二次函数的性质.4.有一个正方体,6个面上分别标有1~6这6个整数,投掷这个正方体一次,则出现向上一面的数字为偶数的概率是()A.B.C.D.【考点】概率公式.【专题】压轴题.【分析】投掷这个正方体会出现1到6共6个数字,每个数字出现的机会相同,即有6个可能结果,而这6个数中有2,4,6三个偶数,则有3种可能.【解答】解:根据概率公式:P(出现向上一面的数字为偶数)=.故选C.【点评】用到的知识点为:概率等于所求情况数与总情况数之比.5.某果园第1年水果产量为100吨,第3年水果产量为144吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x,则根据题意可列方程为()A.144(1﹣x)2=100B.100(1﹣x)2=144C.144(1+x)2=100D.100(1+x)2=144【考点】由实际问题抽象出一元二次方程.【专题】增长率问题.【分析】第3年的产量=第1年的产量×(1+年平均增长率)2,把相关数值代入即可.【解答】解:第2年的产量为100(1+x),第3年的产量为100(1+x)(1+x)=100(1+x)2,即所列的方程为100(1+x)2=144,故选:D.【点评】考查列一元二次方程;得到第3年产量的等量关系是解决本题的关键.6.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论:①ac<0;②a﹣b+c<0;③当x<0时,y<0;④方程ax2+bx+c=0(a≠0)有两个大于﹣1的实数根.其中正确的是()A.①②③B.①③④C.②③④D.①②④【考点】二次函数图象与系数的关系.【分析】①由二次函数y=ax2+bx+c(a≠0)的图象开口方向知道a<0,与y轴交点知道c>0,由此即可确定ac的符号;②由于当x=﹣1时,y=a﹣b+c,而根据图象知道当x=﹣1时y<0,由此即可判定a﹣b+c的符号;③根据图象知道当x<0时,y<c,由此即可判定此结论是否正确;④根据图象与x轴交点的情况即可判定是否正确.【解答】解:∵图象开口向下,∴a<0,∵图象与y轴交于正半轴,则c>0,∴ac<0,故选项①正确;∵当x=﹣1时,对应y值小于0,即a﹣b+c<0,故选项②正确;③当x<0时,y<c,故选项③错误;④利用图象与x轴交点都大于﹣1,故方程ax2+bx+c=0(a≠0)有两个大于﹣1的实数根,故选项④正确;故选;D.【点评】此题主要考查了利用图象求出a,b,c的范围,以及特殊值的代入能得到特殊的式子,如:当x=1时,y>0,a+b+c>0;x=﹣1时,y<0,a﹣b+c<0.7.已知如图,一次函数y=ax+b和反比例函数y=的图象相交于A、B两点,使不等式ax+b>成立的自变量x的取值范围是()A.x<﹣1或x>4B.﹣1<x<4C.x<﹣1或0<x<4D.﹣1<x<0或x>4【考点】反比例函数与一次函数的交点问题.【分析】当一次函数的值>反比例函数的值时,直线在双曲线的上方,由此直接根据图象可以写出一次函数的值>反比例函数的值x的取值范围.【解答】解:由图象得出,一次函数y=ax+b和反比例函数y=的图象的交点A、B两点的横坐标分别为﹣1,4,∵等式ax+b>的解集为一次函数的值>反比例函数的值x的取值范围,∴不等式ax+b>kx的解集为x<﹣1或0<x<4,故选C.【点评】本题考查一次函数的解析式y=kx+b和反比例函数y=中图象问题,这里体现了数形结合的思想,做此类题一定要找到关键的点A、B.8.如图,△ABC的边AC与⊙O相交于C、D两点,且经过圆心O,边AB与⊙O相切,切点为B.已知∠A=30°,则∠C的大小是()A.30°B.45°C.60°D.40°【考点】切线的性质.【专题】计算题.【分析】根据切线的性质由AB与⊙O相切得到OB⊥AB,则∠ABO=90°,利用∠A=30°得到∠AOB=60°,再根据三角形外角性质得∠AOB=∠C+∠OBC,由于∠C=∠OBC,所以∠C=AOB=30°.【解答】解:连结OB,如图,∵AB与⊙O相切,∴OB⊥AB,∴∠ABO=90°,∵∠A=30°,∴∠AOB=60°,∵∠AOB=∠C+∠OBC,而∠C=∠OBC,∴∠C=AOB=30°.故选:A.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.9.如图,将Rt△ABC绕点A按顺时针旋转一定角度得到Rt△ADE,点B的对应点D恰好落在BC边上.若AC=,∠B=60°,则CD的长为()A.0.5B.1.5C.D.1【考点】旋转的性质.【分析】解直角三角形求出AB,再求出CD,然后根据旋转的性质可得AB=AD,然后判断出△ABD是等边三角形,根据等边三角形的三条边都相等可得BD=AB,然后根据CD=BC﹣BD计算即可得解.【解答】解:∵∠B=60°,∴∠C=90°﹣60°=30°,∵AC=,∴AB=AC•tan30°=×=1,∴BC=2AB=2,由旋转的性质得,AB=AD,∴△ABD是等边三角形,∴BD=AB=1,∴CD=BC﹣BD=2﹣1
本文标题:惠州市惠城区2016届九年级上期末数学试卷含答案解析
链接地址:https://www.777doc.com/doc-7839206 .html