您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 江西省新余市2016届九年级上期末数学试卷含答案解析
2015-2016学年江西省新余市九年级(上)期末数学试卷一、选择题1.下列交通标志既是中心对称图形又是轴对称图形的是()A.B.C.D.2.下列诗句所描述的事件中,是不可能事件的是()A.黄河入海流B.锄禾日当午C.大漠孤烟直D.手可摘星辰3.抛物线y=(x+2)2﹣3可以由抛物线y=x2平移得到,则下列平移过程正确的是()A.先向左平移2个单位,再向上平移3个单位B.先向左平移2个单位,再向下平移3个单位C.先向右平移2个单位,再向下平移3个单位D.先向右平移2个单位,再向上平移3个单位4.若反比例函数y=(k≠0)的图象经过点P(﹣2,6),则该函数的图象不经过的点是()A.(﹣6,﹣2)B.(2,﹣6)C.(3,﹣4)D.(﹣3,4)5.如图,一个宽为2cm的刻度尺在圆上移动,当刻度尺的一边与圆相切时,另一边与圆两个交点处的读数恰好为“2”和“8”(单位:cm),那么该圆的半径为()A.cmB.cmC.3cmD.cm6.如图,等腰Rt△ABC(∠ACB=90°)的直角边与正方形DEFG的边长均为2,且AC与DE在同一直线上,开始时点C与点D重合,让△ABC沿这条直线向右平移,直到点A与点E重合为止.设CD的长为x,△ABC与正方形DEFG重合部分(图中阴影部分)的面积为y,则y与x之间的函数关系的图象大致是()A.B.C.D.二、填空题(本大题共8小题,每小题3分,共24分)7.已知点A(2,a)和点B(b,﹣1)关于原点对称,则a=_______;b=_______.8.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有20个,除颜色外其他完全相同.小明通过多次摸球试验后发现其中摸到红色、黑色球的频率分别稳定在15%和45%,则口袋中白色球很可能有_______个.9.已知关于x的一元二次方程(a﹣1)x2﹣2x+1=0有两个不相等的实数根,则a的取值范围是_______.10.用等腰直角三角板画∠AOB=45°,并将三角板沿OB方向平移到如图所示的虚线处后绕点M逆时针方向旋转22°,则三角板的斜边与射线OA的夹角α为_______度.11.正六边形的外接圆的半径与内切圆的半径之比为_______.12.一个底面直径是80cm,母线长为90cm的圆锥的侧面展开图的圆心角的度数为_______.13.如图,AB是⊙O的一条弦,点C是⊙O上一动点,且∠ACB=45°,点D、E分别是AC、BC的中点,若⊙O的半径为4,则线段DE的长为_______.14.二次函数y=ax2+bx+c(a≠0)的图象如图(虚线部分为对称轴),给出以下6个结论:①abc>0;②b<a+c;③4a+2b+c>0;④2a<3b;⑤x<1时,y随x的增大而增大;⑥a+b<m(am+b)(m为实数且m≠1),其中正确的结论有_______(填上所有正确结论的序号)三、解答题(每小题5分,共10分)15.用适当的方法解一元二次方程:2(x﹣3)=3x(x﹣3)16.已知关于x的方程x2+ax+a﹣2=0(1)若该方程的一个根为1,求a的值及该方程的另一根;(2)求证:不论a取何实数,该方程都有两个不相等的实数根.四、解答题(共2小题,每小题6分,满分12分)17.如图,Rt△ABC的三个顶点分别是A(﹣3,2),B(0,4),C(0,2),结合所给的平面直角坐标系解答下列问题:(1)画出△ABC以点C为旋转中心旋转180°后对应的△A1B1C;(2)平移△ABC,若点A的对应点A2的坐标为(0,﹣4),画出平移后对应的△A2B2C2;(3)若将△A1B1C绕某一点旋转可以得到△A2B2C2,请直接写出旋转中心的坐标.18.红花中学现要从甲、乙两位男生和丙、丁两位女生中,选派两位同学分别作为①号选手和②号选手代表学校参加全县汉字听写大赛.(1)请用树状图或列表法列举出各种可能选派的结果;(2)求恰好选派一男一女两位同学参赛的概率.五、解答题(共2小题,每小题8分,共16分)19.如图,一次函数y1=x+1的图象与反比例函数(k为常数,且k≠0)的图象都经过点A(m,2)(1)求点A的坐标及反比例函数的表达式;(2)结合图象直接比较:当x>0时,y1和y2的大小.20.已知二次函数y=x2﹣4x+3.(1)用配方法求其图象的顶点C的坐标,并描述该函数的函数值随自变量的增减而变化的情况;(2)画出函数图象的简图,并求函数图象与x轴的交点A,B的坐标(点A在点B的左边)和△ABC的面积.六、解答题(共2小题,每小题9分,共18分)21.如图,点B、C、D都在半径为6的⊙O上,过点C作AC∥BD交OB的延长线于点A,连接CD,已知∠CDB=∠OBD=30°.(1)求证:AC是⊙O的切线;(2)求弦BD的长;(3)求图中阴影部分的面积.22.为了落实国务院的指示精神,某地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=﹣2x+80.设这种产品每天的销售利润为w元.(1)求w与x之间的函数关系式.(2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种产品的销售价不高于每千克28元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?七、解答题(共2小,第23题10分,第24题12分,共22分)23.在△ABC中,AB=BC=2,∠ABC=120°,将△ABC绕点B顺时针旋转角α(0°<α<90°)得△A1BC1,A1B交AC于点E,A1C1分别交AC、BC于D、F两点.(1)如图1,观察并猜想,在旋转过程中,线段EA1与FC有怎样的数量关系?并证明你的结论;(2)如图2,当α=30°时,试判断四边形BC1DA的形状,并说明理由;(3)在(2)的情况下,求ED的长.24.如图,已知二次函数的图象经过点A(3,3)、B(4,0)和原点O.P为二次函数图象上的一个动点,过点P作x轴的垂线,垂足为D(m,0),并与直线OA交于点C.(1)求出二次函数的解析式;(2)当点P在直线OA的上方时,求线段PC的最大值;(3)当m>0时,探索是否存在点P,使得△PCO为等腰三角形,如果存在,求出P的坐标;如果不存在,请说明理由.2015-2016学年江西省新余市九年级(上)期末数学试卷参考答案与试题解析一、选择题1.下列交通标志既是中心对称图形又是轴对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,也不是中心对称图形,故此选项错误;B、不是轴对称图形,也不是中心对称图形,故此选项错误;C、是轴对称图形,也是中心对称图形,故此选项正确;D、不是轴对称图形,也不是中心对称图形,故此选项错误;故选:C.2.下列诗句所描述的事件中,是不可能事件的是()A.黄河入海流B.锄禾日当午C.大漠孤烟直D.手可摘星辰【考点】随机事件.【分析】不可能事件是指在一定条件下,一定不发生的事件.【解答】解:A、是必然事件,故选项错误;B、是随机事件,故选项错误;C、是随机事件,故选项错误;D、是不可能事件,故选项正确.故选D.3.抛物线y=(x+2)2﹣3可以由抛物线y=x2平移得到,则下列平移过程正确的是()A.先向左平移2个单位,再向上平移3个单位B.先向左平移2个单位,再向下平移3个单位C.先向右平移2个单位,再向下平移3个单位D.先向右平移2个单位,再向上平移3个单位【考点】二次函数图象与几何变换.【分析】根据“左加右减,上加下减”的原则进行解答即可.【解答】解:抛物线y=x2向左平移2个单位可得到抛物线y=(x+2)2,抛物线y=(x+2)2,再向下平移3个单位即可得到抛物线y=(x+2)2﹣3.故平移过程为:先向左平移2个单位,再向下平移3个单位.故选:B.4.若反比例函数y=(k≠0)的图象经过点P(﹣2,6),则该函数的图象不经过的点是()A.(﹣6,﹣2)B.(2,﹣6)C.(3,﹣4)D.(﹣3,4)【考点】反比例函数图象上点的坐标特征.【分析】先把点P(﹣2,6)代入反比例函数y=(k≠0)求出k的值,再把各选项代入进行计算即可.【解答】解:∵反比例函数y=(k≠0)的图象经过点P(﹣2,6),∴k=(﹣2)×6=﹣12.A、∵(﹣6)×(﹣2)=12≠﹣12,∴此点不在函数图象上,故本选项正确;B、∵(﹣6)×2=﹣12,∴此点在函数图象上,故本选项错误;C、∵(﹣4)×3=﹣12,∴此点在函数图象上,故本选项错误;D、∵(﹣3)×4=﹣12,∴此点在函数图象上,故本选项错误.故选A.5.如图,一个宽为2cm的刻度尺在圆上移动,当刻度尺的一边与圆相切时,另一边与圆两个交点处的读数恰好为“2”和“8”(单位:cm),那么该圆的半径为()A.cmB.cmC.3cmD.cm【考点】垂径定理;勾股定理.【分析】根据题意得上图.已知弦长和弓形高,求半径.运用垂径定理和勾股定理求解.【解答】解:根据题意得右图,设OC=r,则OB=r﹣2.因为DC=8﹣2=6cm,根据垂径定理,CB=6×=3cm.根据勾股定理:r2=(r﹣2)2+32,解得r=cm.故选D.6.如图,等腰Rt△ABC(∠ACB=90°)的直角边与正方形DEFG的边长均为2,且AC与DE在同一直线上,开始时点C与点D重合,让△ABC沿这条直线向右平移,直到点A与点E重合为止.设CD的长为x,△ABC与正方形DEFG重合部分(图中阴影部分)的面积为y,则y与x之间的函数关系的图象大致是()A.B.C.D.【考点】动点问题的函数图象.【分析】此题可分为两段求解,即C从D点运动到E点和A从D点运动到E点,列出面积随动点变化的函数关系式即可.【解答】解:设CD的长为x,△ABC与正方形DEFG重合部分(图中阴影部分)的面积为y∴当C从D点运动到E点时,即0≤x≤2时,y==.当A从D点运动到E点时,即2<x≤4时,y==∴y与x之间的函数关系由函数关系式可看出A中的函数图象与所求的分段函数对应.故选:A.二、填空题(本大题共8小题,每小题3分,共24分)7.已知点A(2,a)和点B(b,﹣1)关于原点对称,则a=1;b=﹣2.【考点】关于原点对称的点的坐标.【分析】本题比较容易,考查平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),即关于原点的对称点,横纵坐标都变成相反数.根据点A和点B关于原点对称就可以求出a,b的值.【解答】解:∵点A(2,a)与B(b,﹣1)关于原点对称,∴a=1,b=﹣2.8.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有20个,除颜色外其他完全相同.小明通过多次摸球试验后发现其中摸到红色、黑色球的频率分别稳定在15%和45%,则口袋中白色球很可能有8个.【考点】利用频率估计概率.【分析】球的总数乘以白球所占球的总数的比例即为白球的个数.【解答】解:∵摸到红色、黑色球的频率分别稳定在15%和45%,∴摸到白球的频率稳定在1﹣15%﹣45%=40%,∴白球的个数为:20×40%=8个,故答案为:8.9.已知关于x的一元二次方程(a﹣1)x2﹣2x+1=0有两个不相等的实数根,则a的取值范围是a<2,且a≠1.【考点】根的判别式;一元二次方程的定义.【分析】本题是根的判别式的应用,因为关于x的一元二次方程(a﹣1)x2﹣2x+l=0有两个不相等的实数根,所以△=b2﹣4ac>0,从而可以列出关于a的不等式,求解即可,还要考虑二次项的系数不能为0.【解答】解:∵关于x的一元二次方程(a﹣1)x2﹣2x+l=0有两个不相等的实数根,∴△=b2﹣4ac>0,即4﹣4×(a﹣2)×1>0,解这个不等式得,a<2,又∵二次项系数是(a﹣1),∴a≠1.故a的取值范围是a<2且a≠1.10.用等腰直角三角板画∠AOB=45°,并将三角板沿OB方向平移到如图所示的虚线处后绕点M逆时针方向旋
本文标题:江西省新余市2016届九年级上期末数学试卷含答案解析
链接地址:https://www.777doc.com/doc-7839375 .html