您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 辽宁省丹东市2015-2016学年八年级上期末数学试卷含答案解析
辽宁省丹东市2015~2016学年度八年级上学期期末数学试卷一、选择题(共9小题,每小题2分,满分18分,每小题只有一个正确选项)1.计算﹣的结果是()A.﹣6B.6C.﹣36D.362.在△ABC中,∠A,∠B,∠C的对边分别记为a,b,c,下列结论中不正确的是()A.如果∠A﹣∠B=∠C,那么△ABC是直角三角形B.如果a2=b﹣2c2,那么△ABC是直角三角形且∠C=90°C.如果∠A:∠B:∠C=1:3:2,那么△ABC是直角三角形D.如果a2:b2:c2=9:16:25,那么△ABC是直角三角形3.正方体盒子的棱长为2,BC的中点为M,一只蚂蚁从A点爬行到M点的最短距离为()A.B.C.5D.2+4.在平面直角坐标系中,已知点P的坐标是(﹣1,﹣2),则点P关于y轴对称的点的坐标是()A.(﹣1,2)B.(1,﹣2)C.(1,2)D.(2,1)5.已知一次函数y=kx+b的图象经过第一、二、三象限,则b的值可以是()A.﹣2B.﹣1C.0D.26.已知一组数据:12,5,9,5,14,下列说法不正确的是()A.平均数是9B.中位数是9C.方差是12D.众数是57.下列命题是假命题的是()A.如果a∥b,b∥c,那么a∥cB.直角三角形的两个锐角互余C.两条直线被第三条直线所截,内错角相等D.两点之间,线段最短8.如图,射线OC的端点O在直线AB上,∠AOC的度数比∠BOC的2倍多10度.设∠AOC和∠BOC的度数分别为x,y,则下列正确的方程组为()A.B.C.D.9.甲、乙两人以相同路线前往距离单位10千米的培训中心参加学习,图中l甲、l乙分别表示甲、乙两人前往目的地所走的路程S(千米)随时间t(分钟)变化的函数图象.以下说法:①从单位到培训中心,乙比甲少用了30分钟;②甲的平均速度为15千米/小时;③乙走了8千米后遇到甲;④乙出发6分钟后追上甲.其中正确的有()A.4个B.3个C.2个D.1个二、填空题(共9小题,每小题2分,满分18分)10.在﹣,π,0,1.23,,,0.131131113中,无理数有个.11.3+的整数部分是a,3﹣的整数部分是b,则a+b=.12.若一直角三角形的两边长为4、5,则第三边的长为.13.若某直线与y=3x+b平行,且经过点(0,﹣3),则该函数的表达式应为.14.2015~2016学年度八年级某班为了奖励学习进步的学生,购买了单价为3元的笔记本和单价为5元的钢笔两种奖品,共花费35元,一共有种购买方案.15.如图,已知函数y=x﹣2和y=﹣2x+1的图象交于点P,根据图象可得方程组的解是.16.已知,则.17.如图,直线AB∥CD,∠E=90°,∠A=25°,则∠C=.18.如图,矩形ABCD中,AB=3,AD=1,AB在数轴上,若以点A为圆心,对角线AC的长为半径作弧交数轴的正半轴于M,则点M的表示的数为.三、(共3小题,满分18分)19.计算:﹣(﹣)(+)20.解方程组:.21.在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为(﹣4,5),(﹣1,3).(1)请在如图所示的网格平面内作出平面直角坐标系;(2)请作出△ABC关于y轴对称的△A′B′C′;(3)写出点B′的坐标.四、解答题(共2小题,满分16分)22.在一棵树的10米高处有两只猴子,一只猴子爬下树走到离树20米处的池塘的A处.另一只爬到树顶D后直接跃到A处,距离以直线计算,如果两只猴子所经过的距离相等,则这棵树高多少米?23.某商店需要购进甲、乙两种商品共160件,其进价和售价如表:(注:获利=售价﹣进价)甲乙进价(元/件)1535售价(元/件)2045若商店计划销售完这批商品后能获利1100元,请利用二元一次方程组求甲、乙两种商品应分别购进多少件?五、(共2小题,满分18分)24.为增强学生的身体素质,教育行政部门规定学生每天参加户外活动的平均时间不少于1小时.为了解学生参加户外活动的情况,对部分学生参加户外活动的时间进行抽样调查,并将调查结果绘制作成如下两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)在这次调查中共调查了多少名学生?(2)求户外活动时间为1.5小时的人数,并补充频数分布直方图;(3)求表示户外活动时间1小时的扇形圆心角的度数;(4)本次调查中学生参加户外活动的平均时间是否符合要求?户外活动时间的众数和中位数是多少?25.如图,已知AB∥CD,分别探究下面四个图形中∠P和∠A、∠C的关系,并从所得的四个关系中任选一个加以说明,证明所探究的结论的正确性.结论(1)(2)(3)(4).我选择结论.说明理由.六、(本题满分12分)26.某中学2016届九年级甲、乙两班商定举行一次远足活动,A、B两地相距10千米,甲班从A地出发匀速步行到B地,乙班从B地出发匀速步行到A地.两班同时出发,相向而行.设步行时间为x小时,甲、乙两班离A地的距离分别为y1、y2千米,y1、y2与x的函数关系图象如图所示.根据图象解答下列问题:(1)直接写出,y1、y2与x的函数关系式;(2)求甲、乙两班学生出发后,几小时相遇?相遇时乙班离A地多少千米?(3)甲、乙两班首次相距4千米时所用时间是多少小时?辽宁省丹东市2015~2016学年度八年级上学期期末数学试卷参考答案与试题解析一、选择题(共9小题,每小题2分,满分18分,每小题只有一个正确选项)1.计算﹣的结果是()A.﹣6B.6C.﹣36D.36【考点】算术平方根.【分析】根据算术平方根都是非负数,可得一个数的算术平方根,根据在一个数的前面加上负号就是这个数的相反数,可得答案.【解答】解:,﹣,故选:A.【点评】本题考查了算术平方根,先求算术平方根,再求相反数.2.在△ABC中,∠A,∠B,∠C的对边分别记为a,b,c,下列结论中不正确的是()A.如果∠A﹣∠B=∠C,那么△ABC是直角三角形B.如果a2=b﹣2c2,那么△ABC是直角三角形且∠C=90°C.如果∠A:∠B:∠C=1:3:2,那么△ABC是直角三角形D.如果a2:b2:c2=9:16:25,那么△ABC是直角三角形【考点】勾股定理的逆定理.【分析】根据勾股定理的逆定理、三角形内角和定理、直角三角形的判定定理解得即可.【解答】解:如果∠A﹣∠B=∠C,那么△ABC是直角三角形,A正确;如果a2=b﹣2c2,那么△ABC是直角三角形且∠B=90°,B错误;如果∠A:∠B:∠C=1:3:2,设∠A=x,则∠B=2x,∠C=3x,则x+3x+2x=180°,解得,x=30°,则3x=90°,那么△ABC是直角三角形,C正确;如果a2:b2:c2=9:16:25,则如果a2+b2=c2,那么△ABC是直角三角形,D正确;故选:B.【点评】本题考查的是勾股定理的逆定理的应用,如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.3.正方体盒子的棱长为2,BC的中点为M,一只蚂蚁从A点爬行到M点的最短距离为()A.B.C.5D.2+【考点】平面展开-最短路径问题.【分析】把此正方体的点M所在的面展开,然后在平面内,利用勾股定理求点A和点M间的线段长,即可得到蚂蚁爬行的最短距离.在直角三角形中,一条直角边长等于2长,另一条直角边长等于3,利用勾股定理可求得.【解答】解:展开正方体的点M所在的面,∵BC的中点为M,所以MC=BC=1,在直角三角形中AM==.故选A.【点评】本题考查了勾股定理的拓展应用.“化曲面为平面”是解决“怎样爬行最近”这类问题的关键.4.在平面直角坐标系中,已知点P的坐标是(﹣1,﹣2),则点P关于y轴对称的点的坐标是()A.(﹣1,2)B.(1,﹣2)C.(1,2)D.(2,1)【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于y轴对称的点,纵坐标相同,横坐标互为相反数,可得答案.【解答】解:点P的坐标是(﹣1,﹣2),则点P关于y轴对称的点的坐标是(1,﹣2),故选:B.【点评】本题考查了关于y轴的对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.5.已知一次函数y=kx+b的图象经过第一、二、三象限,则b的值可以是()A.﹣2B.﹣1C.0D.2【考点】一次函数图象与系数的关系.【专题】探究型.【分析】根据一次函数的图象经过第一、二、三象限判断出b的符号,再找出符合条件的b的可能值即可.【解答】解:∵一次函数的图象经过第一、二、三象限,∴b>0,∴四个选项中只有2符合条件.故选D.【点评】本题考查的是一次函数的图象与系数的关系,即一次函数y=kx+b(k≠0)中,当b<0时,函数图象与y轴相交于负半轴.6.已知一组数据:12,5,9,5,14,下列说法不正确的是()A.平均数是9B.中位数是9C.方差是12D.众数是5【考点】方差;算术平均数;中位数;众数.【专题】计算题.【分析】先把数据由小到大排列为5,5,9,12,14,然后根据算术平均数、中位数和众数的定义得到数据的算术平均数,中位数和众数,再根据方差公式计算数据的方差,然后利用计算结果对各选项进行判断.【解答】解:数据由小到大排列为5,5,9,12,14,它的平均数为=9,数据的中位数为9,众数为5,数据的方差=[(5﹣9)2+(5﹣9)2+(9﹣9)2+(12﹣9)2+(14﹣9)2]=13.2.故选C.【点评】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差,计算公式是:s2=[(x1﹣x¯)2+(x2﹣x¯)2+…+(xn﹣x¯)2].也考查了算术平均数、中位数和众数.7.下列命题是假命题的是()A.如果a∥b,b∥c,那么a∥cB.直角三角形的两个锐角互余C.两条直线被第三条直线所截,内错角相等D.两点之间,线段最短【考点】命题与定理.【分析】根据平行线的性质对A、C进行判断;根据互余的定义对B进行判断;根据线段公理对D进行判断.【解答】解:A、如果a∥b,b∥c,那么a∥c,所以A选项为真命题;B、直角三角形的两个锐角互余,所以B选项为真命题;C、两条平行直线被第三条直线所截,内错角相等,所以C选项为假命题;D、两点之间,线段最短,所以D选项为真命题.故选C.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.8.如图,射线OC的端点O在直线AB上,∠AOC的度数比∠BOC的2倍多10度.设∠AOC和∠BOC的度数分别为x,y,则下列正确的方程组为()A.B.C.D.【考点】由实际问题抽象出二元一次方程组;角的计算.【专题】几何图形问题.【分析】此题中的等量关系有:①∠AOC的度数比∠BOC的2倍多10°;②∠AOC和∠BOC组成了平角.【解答】解:根据∠AOC的度数比∠BOC的2倍多10°,得方程x=2y+10;根据∠AOC和∠BOC组成了平角,得方程x+y=180.列方程组为.故选B.【点评】此题注意数形结合的思想.注意隐含的等量关系:两个角组成了一个平角,即两个角的和是180度.9.甲、乙两人以相同路线前往距离单位10千米的培训中心参加学习,图中l甲、l乙分别表示甲、乙两人前往目的地所走的路程S(千米)随时间t(分钟)变化的函数图象.以下说法:①从单位到培训中心,乙比甲少用了30分钟;②甲的平均速度为15千米/小时;③乙走了8千米后遇到甲;④乙出发6分钟后追上甲.其中正确的有()A.4个B.3个C.2个D.1个【考点】一次函数的应用.【分析】①根据图象即可直接求得两车所用时间,从而判断;②根据路程是10千米,以及①的结论即可直接求得甲的速度;③④首先根据待定系数法求得两个函数的解析式,然后求交点即可.【解答】解:①甲所用的时间
本文标题:辽宁省丹东市2015-2016学年八年级上期末数学试卷含答案解析
链接地址:https://www.777doc.com/doc-7839511 .html