您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 人教版八年级下《第17章勾股定理》单元测试含答案解析
《第17章勾股定理》一、选择题1.下面三组数中是勾股数的一组是()A.6,7,8B.21,28,35C.1.5,2,2.5D.5,8,132.一直角三角形的一条直角边长是7cm,另一条直角边与斜边长的和是49cm,则斜边的长()A.18cmB.20cmC.24cmD.25cm3.在△ABC中,∠C=90°,若AB=5,则AB2+AC2+BC2=()A.10B.15C.30D.504.在△ABC中,AB=13,AC=15,高AD=12,则BC的长为()A.14B.14或4C.8D.4或85.等腰三角形底边上的高为8,周长为32,则三角形的面积为()A.56B.48C.40D.326.直角三角形有一条直角边的长为11,另外两边的长也是正整数,则此三角形的周长为()A.120B.121C.132D.1237.如图,某市在“旧城改造”中计划在一块如图所示的三角形空地上种植某种草皮以美化环境,已知这种草皮每平方米a元,则购买这种草皮至少要()A.450a元B.225a元C.150a元D.300a元8.如图:有一圆柱,它的高等于8cm,底面直径等于4cm(π=3),在圆柱下底面的A点有一只蚂蚁,它想吃到上底面与A相对的B点处的食物,需要爬行的最短路程大约()A.10cmB.12cmC.19cmD.20cm14.在直线l上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积依次是S1,S2,S3,S4,则S1+S2+S3+S4=.二、填空题9.在Rt△ABC中,∠C=90°,AC=3,BC=4,则AB=.10.在△ABC中,∠C=90°,若c=10,a:b=3:4,则ab=.11.如图,在高2米,坡角为30°的楼梯表面铺地毯,地毯的长至少需米.12.如图,∠OAB=∠OBC=∠OCD=90°,AB=BC=CD=1,OA=2,则OD2=.13.如图在4个均由16个小正方形组成的网格正方形中,各有一个格点三角形,那么这4个三角形中,与众不同的是,不同之处:.三、解答题15.如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形(涂上阴影).(1)在图1中,画一个三角形,使它的三边长都是有理数;(2)在图2,图3中,分别画一个直角三角形,使它的三边长都是无理数.(两个三角形不全等)16.如图,在△ABD中,∠A是直角,AB=3,AD=4,BC=12,DC=13,求四边形ABCD的面积.17.如图所示,折叠长方形的一边AD,使点D落在边BC的点F处,已知AB=8cm,BC=10cm,则EC的长为cm.18.如果△ABC的三边长分别为a、b、c,并且满足a2+b2+c2+338=10a+24b+26c,试判断△ABC的形状.《第17章勾股定理》参考答案与试题解析一、选择题1.下面三组数中是勾股数的一组是()A.6,7,8B.21,28,35C.1.5,2,2.5D.5,8,13【考点】勾股数.【分析】勾股数的定义:满足a2+b2=c2的三个正整数,称为勾股数,据此求解即可.【解答】解:A、62+72≠82,不能构成勾股数,故错误;B、212+282=352,能构成勾股数,故正确;C、1.5和2.5不是整数,所以不能构成勾股数,故错误;D、52+82≠132,不能构成勾股数,故错误.故选B.【点评】此题主要考查了勾股数的定义,及勾股定理的逆定理:已知△ABC的三边满足a2+b2=c2,则△ABC是直角三角形.2.一直角三角形的一条直角边长是7cm,另一条直角边与斜边长的和是49cm,则斜边的长()A.18cmB.20cmC.24cmD.25cm【考点】勾股定理.【分析】设另一条直角边是a,斜边是c.根据另一条直角边与斜边长的和是49cm,以及勾股定理就可以列出方程组,即可求解.【解答】解:设另一条直角边是a,斜边是c.根据题意,得,联立解方程组,得.故选D.【点评】注意根据已知条件结合勾股定理列方程求解.解方程组的方法可以把①方程代入②方程得到c﹣a=1,再联立解方程组.3.在△ABC中,∠C=90°,若AB=5,则AB2+AC2+BC2=()A.10B.15C.30D.50【考点】勾股定理.【分析】先画图,再根据勾股定理易求BC2+AC2的值,再加上AB2即可.【解答】解:如右图所示,在Rt△ABC中,BC2+AC2=AB2,∵AB=5,∴BC2+AC2=25,∴AB2+AC2+BC2=25+25=50.故选D.【点评】本题考查了勾股定理,解题的关键是找准直角边和斜边.4.在△ABC中,AB=13,AC=15,高AD=12,则BC的长为()A.14B.14或4C.8D.4或8【考点】勾股定理.【专题】分类讨论.【分析】根据勾股定理先求出BD、CD的长,再求BC就很容易了.【解答】解:此图中有两个直角三角形,利用勾股定理可得:CD2=152﹣122=81,∴CD=9,同理得BD2=132﹣122=25∴BD=5∴BC=14,此图还有另一种画法.即当是此种情况时,BC=9﹣5=4故选B.【点评】此题主要考查了直角三角形中勾股定理的应用.即直角三角形两直角边的平方和等于斜边的平方.5.等腰三角形底边上的高为8,周长为32,则三角形的面积为()A.56B.48C.40D.32【考点】勾股定理;等腰三角形的性质.【分析】根据题意画出图形,进而利用勾股定理得出DC的长,进而求出BC的长,即可得出答案.【解答】解:过点A做AD⊥BC于点D,∵等腰三角形底边上的高为8,周长为32,∴AD=8,设DC=BD=x,则AB=(32﹣2x)=16﹣x,∴AC2=AD2+DC2,即(16﹣x)2=82+x2,解得:x=6,故BC=12,则△ABC的面积为:×AD×BC=×8×12=48.故选:B.【点评】此题主要考查了勾股定理以及等腰三角形的性质,得出DC的长是解题关键.6.直角三角形有一条直角边的长为11,另外两边的长也是正整数,则此三角形的周长为()A.120B.121C.132D.123【考点】勾股定理.【专题】计算题.【分析】设另一条直角边为x,斜边为y,由勾股定理得出y2﹣x2=112,推出(y+x)(y﹣x)=121,根据121=11×11=121×1,推出x+y=121,y﹣x=1,求出x、y的值,即可求出答案.【解答】解:设另一条直角边为x,斜边为y,∵由勾股定理得:y2﹣x2=112,∴(y+x)(y﹣x)=121=11×11=121×1,∵x、y为整数,y>x,∴x+y>y﹣x,即只能x+y=121,y﹣x=1,解得:x=60,y=61,∴三角形的周长是11+60+61=132,故选C.【点评】本题考查了勾股定理的应用,关键是得出x+y=121和y﹣x=1,题目比较好,但有一定的难度.7.如图,某市在“旧城改造”中计划在一块如图所示的三角形空地上种植某种草皮以美化环境,已知这种草皮每平方米a元,则购买这种草皮至少要()A.450a元B.225a元C.150a元D.300a元【考点】解直角三角形的应用.【专题】压轴题.【分析】求出三角形地的面积即可求解.如图所示,作BD⊥CA于D点.在Rt△ABD中,利用正弦函数定义求BD,即△ABC的高.运用三角形面积公式计算面积求解.【解答】解:如图所示,作BD⊥CA于D点.∵∠BAC=150°,∴∠DAB=30°,∵AB=20米,∴BD=20sin30°=10米,∴S△ABC=×30×10=150(米2).已知这种草皮每平方米a元,所以一共需要150a元.故选C.【点评】本题考查了通过作辅助线构建直角三角形,从而解斜三角形的能力.8.如图:有一圆柱,它的高等于8cm,底面直径等于4cm(π=3),在圆柱下底面的A点有一只蚂蚁,它想吃到上底面与A相对的B点处的食物,需要爬行的最短路程大约()A.10cmB.12cmC.19cmD.20cm【考点】平面展开﹣最短路径问题.【分析】根据两点之间,线段最短.首先把A和B展开到一个平面内,即展开圆柱的半个侧面,得到一个矩形,然后根据勾股定理,求得蚂蚁爬行的最短路程即展开矩形的对角线的长度.【解答】解:展开圆柱的半个侧面,得到一个矩形:矩形的长是圆柱底面周长的一半即2π=6,矩形的宽是圆柱的高即8.根据勾股定理得:蚂蚁爬行的最短路程即展开矩形的对角线长即10.故选A.【点评】本题考查了勾股定理的拓展应用.“化曲面为平面”是解决“怎样爬行最近”这类问题的关键.本题注意只需展开圆柱的半个侧面.14.在直线l上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积依次是S1,S2,S3,S4,则S1+S2+S3+S4=4.【考点】勾股定理;全等三角形的判定与性质.【专题】规律型.【分析】运用勾股定理可知,每两个相邻的正方形面积和都等于中间斜放的正方形面积,据此即可解答.【解答】解:观察发现,∵AB=BE,∠ACB=∠BDE=90°,∴∠ABC+∠BAC=90°,∠ABC+∠EBD=90°,∴∠BAC=∠EBD,∴△ABC≌△BDE(AAS),∴BC=ED,∵AB2=AC2+BC2,∴AB2=AC2+ED2=S1+S2,即S1+S2=1,同理S3+S4=3.则S1+S2+S3+S4=1+3=4.故答案为:4.【点评】运用了全等三角形的判定以及性质、勾股定理.注意发现两个小正方形的面积和正好是之间的正方形的面积.二、填空题9.在Rt△ABC中,∠C=90°,AC=3,BC=4,则AB=5.【考点】勾股定理.【分析】根据勾股定理直接解答即可.【解答】解:因为在Rt△ABC中,AB2=AC2+BC2,即AB==5.【点评】本题考查了勾股定理解及直角三角形的能力.10.在△ABC中,∠C=90°,若c=10,a:b=3:4,则ab=48.【考点】勾股定理.【分析】首先根据勾股定理以及a:b=3:4,知斜边占5份.又c=10,所以一份是2,则a=6,b=8.所以ab=48.【解答】解:设a=3x,b=4x,则c==5x,又c=10,所以x=2,即a=6,b=8,所以ab=48.故答案为:48.【点评】熟练运用勾股定理,此类题首先计算一份的值,再进一步进行计算.11.如图,在高2米,坡角为30°的楼梯表面铺地毯,地毯的长至少需2+2米.【考点】勾股定理的应用.【专题】压轴题.【分析】地毯水平的部分的和是水平边的和,竖直的部分的和是竖直边,因此根据勾股定理求出直角三角形两直角边即可.【解答】解:已知直角三角形的高是2米,根据三角函数得到:水平的直角边是=2,则地毯水平的部分的和是水平边的和,竖直的部分的和是竖直边,则地毯的长是(2+2)米.【点评】正确计算地毯的长度是解决本题的关键.12.如图,∠OAB=∠OBC=∠OCD=90°,AB=BC=CD=1,OA=2,则OD2=7.【考点】勾股定理.【分析】连续运用勾股定理即可解答.【解答】解:由勾股定理可知OB=,OC=,OD=∴OD2=7.【点评】本题考查了利用勾股定理解直角三角形的能力即:直角三角形两直角边的平方和等于斜边的平方.13.如图在4个均由16个小正方形组成的网格正方形中,各有一个格点三角形,那么这4个三角形中,与众不同的是A,不同之处:A不是直角三角形,B,C,D是直角三角形.【考点】勾股定理.【专题】网格型.【分析】可以设正方形小格的边长是1.根据勾股定理计算各个三角形的三边,看三边的平方是否满足两条较短边的平方和等于最长边的平方.【解答】解:(1)在A图中三角形的三个边的长为、、,由勾股定理的逆定理可知5+10≠17,故A不是直角三角形;(2)在B图中三角形的三个边的长为2,4,,由勾股定理的逆定理可知22+42=()2,所以B是直角三角形;(3)根据(2)的计算方法,同理可求得C,D也是直角三角形.【点评】综合运用了勾股定理及其逆定理.三、解答题15.如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形(涂上阴影).(1
本文标题:人教版八年级下《第17章勾股定理》单元测试含答案解析
链接地址:https://www.777doc.com/doc-7840051 .html