您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 汕头市潮南区2016届九年级上期末数学试卷(B)含答案解析
2015-2016学年广东省汕头市潮南区两英镇九年级(上)期末数学试卷(B卷)一、选择题(每小题3分,共30分)1.必然事件的概率是()A.﹣1B.0C.0.5D.12.如图,ABCD为正方形,O为对角线AC、BD的交点,则△COD绕点O经过下列哪种旋转可以得到△DOA()A.顺时针旋转90°B.顺时针旋转45°C.逆时针旋转90°D.逆时针旋转45°3.一元二次方程x2+px﹣2=0的一个根为2,则p的值为()A.1B.2C.﹣1D.﹣24.如图,⊙O的直径CD垂直弦AB于点E,且CE=2,DE=8,则AB的长为()A.2B.4C.6D.85.在一个不透明的布袋中装有50个黄、白两种颜色的球,除颜色外其他都相同,小红通过多次摸球试验后发现,摸到黄球的频率稳定在0.3左右,则布袋中白球可能有()A.15个B.20个C.30个D.35个6.若抛物线y=x2﹣2x+c与y轴的交点为(0,﹣3),则下列说法不正确的是()A.抛物线开口向上B.抛物线的对称轴是x=1C.当x=1时,y的最大值为﹣4D.抛物线与x轴的交点为(﹣1,0),(3,0)7.关于x的一元二次方程kx2+2x﹣1=0有两个不相等的实数根,则k的取值范围是()A.k>﹣1B.k>1C.k≠0D.k>﹣1且k≠08.若等腰直角三角形的外接圆半径的长为2,则其内切圆半径的长为()A.B.2﹣2C.2﹣D.﹣29.如图是二次函数y=ax2+bx+c的部分图象,由图象可知不等式ax2+bx+c>0的解集是()A.﹣1<x<5B.x>5C.x<﹣1且x>5D.x<﹣1或x>510.如图,扇形AOB中,半径OA=2,∠AOB=120°,C是的中点,连接AC、BC,则图中阴影部分面积是()A.﹣2B.﹣2C.﹣D.﹣二、填空题(每小题4分,共24分)11.若抛物线y=(x+m)2+n+1的顶点为(2,﹣5),则m=,n=.12.如图所示,△ABC绕点A逆时针旋转某一角度得到△ADE,若∠1=∠2=∠3=20°,则旋转角为度.13.已知关于x的方程x2+(1﹣m)x+=0有两个不相等的实数根,则m的最大整数值是.14.有两辆车按1,2编号,舟舟和嘉嘉两人可任意选坐一辆车.则两个人同坐2号车的概率为.15.如图,AB是⊙O的弦,AC是⊙O的切线,A为切点,BC经过圆心,若∠B=25°,则∠C的大小等于.16.在实数范围内定义一种运算“*”,其规则为a*b=a2﹣2ab+b2,根据这个规则求方程(x﹣4)*1=0的解为.三、解答题(一)(每小题6分,共18分)17.解方程:3x(x﹣2)=2(2﹣x)18.正方形ABCD在坐标系中的位置如图所示.(1)点B关于原点中心对称的点的坐标是.(2)画出正方形ABCD绕点D点顺时针方向旋转90°后的图形.19.有两个构造完全相同(除所标数字外)的转盘A、B,游戏规定,转动两个转盘各一次,指向大的数字获胜.现由你和小明各选择一个转盘游戏,你会选择哪一个,为什么?四、解答题(二)(每小题7分,共21分)20.某地区2013年投入教育经费2500万元,2015年投入教育经费3025万元.(1)求2013年至2015年该地区投入教育经费的年平均增长率;(2)根据(1)所得的年平均增长率,预计2016年该地区将投入教育经费多少万元.21.如图,河上有一座抛物线桥洞,已知桥下的水面离桥拱顶部3m时,水面宽AB为6m,当水位上升0.5m时:(1)求水面的宽度CD为多少米?(2)当水面的宽度到CD时,有一艘游船,它的左右两边缘最宽处有一个长方体形状的遮阳棚,此船正对着桥洞在上述河流中航行,若游船宽(指船的最大宽度)为2m,从水面到棚顶的高度为1.8m,问这艘游船能否从桥洞下通过?22.如图,已知Rt△ABC中,∠ABC=90°,先把△ABC绕点B顺时针旋转90°至△DBE后,再把△ABC沿射线平移至△FEG,DE、FG相交于点H.(1)判断线段DE、FG的位置关系,并说明理由;(2)连结CG,求证:四边形CBEG是正方形.五、解答题(三)(每小题9分,共27分)23.已知关于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a、b、c分别为△ABC三边的长.(1)如果x=﹣1是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(3)如果△ABC是等边三角形,试求这个一元二次方程的根.24.如图,AB是半圆的直径,O为圆心,AD、BD是半圆的弦,且∠PDA=∠PBD.(1)判断直线PD是否为⊙O的切线,并说明理由;(2)如果∠BDE=60°,PD=,求PA的长.25.如图,抛物线y=x2﹣bx﹣5与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,点C与点F关于抛物线的对称轴对称,直线AF交y轴于点E,|OC|:|OA|=5:1.(1)求抛物线的解析式;(2)求直线AF的解析式;(3)在直线AF上是否存在点P,使△CFP是直角三角形?若存在,求出P点坐标;若不存在,说明理由.2015-2016学年广东省汕头市潮南区两英镇九年级(上)期末数学试卷(B卷)参考答案与试题解析一、选择题(每小题3分,共30分)1.必然事件的概率是()A.﹣1B.0C.0.5D.1【考点】概率的意义.【分析】根据必然事件就是一定发生的事件,即发生的概率是1的事件即可解答.【解答】解:∵必然事件就是一定发生的事件∴必然事件发生的概率是1.故选D.【点评】本题主要考查随机事件的意义;事件分为确定事件和不确定事件(随机事件),确定事件又分为必然事件和不可能事件,其中:①必然事件发生的概率为1,即P(必然事件)=1;②不可能事件发生的概率为0,即P(不可能事件)=0;③如果A为不确定事件(随机事件),那么0<P(A)<1.2.如图,ABCD为正方形,O为对角线AC、BD的交点,则△COD绕点O经过下列哪种旋转可以得到△DOA()A.顺时针旋转90°B.顺时针旋转45°C.逆时针旋转90°D.逆时针旋转45°【考点】旋转的性质.【专题】几何图形问题.【分析】因为四边形ABCD为正方形,所以∠COD=∠DOA=90°,OC=OD=OA,则△COD绕点O逆时针旋转得到△DOA,旋转角为∠COD或∠DOA,据此可得答案.【解答】解:∵四边形ABCD为正方形,∴∠COD=∠DOA=90°,OC=OD=OA,∴△COD绕点O逆时针旋转得到△DOA,旋转角为∠COD或∠DOA,故选:C.【点评】本题考查了旋转的性质,旋转要找出旋转中心、旋转方向、旋转角.3.一元二次方程x2+px﹣2=0的一个根为2,则p的值为()A.1B.2C.﹣1D.﹣2【考点】一元二次方程的解.【专题】待定系数法.【分析】把x=2代入已知方程,列出关于p的一元一次方程,通过解该方程来求p的值.【解答】解:∵一元二次方程x2+px﹣2=0的一个根为2,∴22+2p﹣2=0,解得p=﹣1.故选:C.【点评】本题考查了一元二次方程的解的定义.能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.4.如图,⊙O的直径CD垂直弦AB于点E,且CE=2,DE=8,则AB的长为()A.2B.4C.6D.8【考点】垂径定理;勾股定理.【专题】计算题.【分析】根据CE=2,DE=8,得出半径为5,在直角三角形OBE中,由勾股定理得BE,根据垂径定理得出AB的长.【解答】解:∵CE=2,DE=8,∴OB=5,∴OE=3,∵AB⊥CD,∴在△OBE中,得BE=4,∴AB=2BE=8.故选:D.【点评】本题考查了勾股定理以及垂径定理,是基础知识要熟练掌握.5.在一个不透明的布袋中装有50个黄、白两种颜色的球,除颜色外其他都相同,小红通过多次摸球试验后发现,摸到黄球的频率稳定在0.3左右,则布袋中白球可能有()A.15个B.20个C.30个D.35个【考点】利用频率估计概率.【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,设出未知数列出方程求解.【解答】解:设袋中有黄球x个,由题意得=0.3,解得x=15,则白球可能有50﹣15=35个.故选D.【点评】本题利用了用大量试验得到的频率可以估计事件的概率.关键是利用黄球的概率公式列方程求解得到黄球的个数.6.若抛物线y=x2﹣2x+c与y轴的交点为(0,﹣3),则下列说法不正确的是()A.抛物线开口向上B.抛物线的对称轴是x=1C.当x=1时,y的最大值为﹣4D.抛物线与x轴的交点为(﹣1,0),(3,0)【考点】二次函数的性质.【分析】A根据二次函数二次项的系数的正负确定抛物线的开口方向.B利用x=﹣可以求出抛物线的对称轴.C利用顶点坐标和抛物线的开口方向确定抛物线的最大值或最小值.D当y=0时求出抛物线与x轴的交点坐标.【解答】解:∵抛物线过点(0,﹣3),∴抛物线的解析式为:y=x2﹣2x﹣3.A、抛物线的二次项系数为1>0,抛物线的开口向上,正确.B、根据抛物线的对称轴x=﹣=﹣=1,正确.C、由A知抛物线的开口向上,二次函数有最小值,当x=1时,y的最小值为﹣4,而不是最大值.故本选项错误.D、当y=0时,有x2﹣2x﹣3=0,解得:x1=﹣1,x2=3,抛物线与x轴的交点坐标为(﹣1,0),(3,0).正确.故选C.【点评】本题考查的是二次函数的性质,根据a的正负确定抛物线的开口方向,利用顶点坐标公式求出抛物线的对称轴和顶点坐标,确定抛物线的最大值或最小值,当y=0时求出抛物线与x轴的交点坐标.7.关于x的一元二次方程kx2+2x﹣1=0有两个不相等的实数根,则k的取值范围是()A.k>﹣1B.k>1C.k≠0D.k>﹣1且k≠0【考点】根的判别式.【分析】方程有两个不相等的实数根,则△>0,由此建立关于k的不等式,然后可以求出k的取值范围.【解答】解:由题意知k≠0,△=4+4k>0解得k>﹣1且k≠0.故选D.【点评】总结:1、一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.2、一元二次方程的二次项系数不为0.8.若等腰直角三角形的外接圆半径的长为2,则其内切圆半径的长为()A.B.2﹣2C.2﹣D.﹣2【考点】三角形的内切圆与内心;等腰三角形的性质;三角形的外接圆与外心.【分析】由于直角三角形的外接圆半径是斜边的一半,由此可求得等腰直角三角形的斜边长,进而可求得两条直角边的长;然后根据直角三角形内切圆半径公式求出内切圆半径的长.【解答】解:∵等腰直角三角形外接圆半径为2,∴此直角三角形的斜边长为4,两条直角边分别为2,∴它的内切圆半径为:R=(2+2﹣4)=2﹣2.故选B.【点评】本题考查了三角形的外接圆和三角形的内切圆,等腰直角三角形的性质,要注意直角三角形内切圆半径与外接圆半径的区别:直角三角形的内切圆半径:r=(a+b﹣c);(a、b为直角边,c为斜边)直角三角形的外接圆半径:R=c.9.如图是二次函数y=ax2+bx+c的部分图象,由图象可知不等式ax2+bx+c>0的解集是()A.﹣1<x<5B.x>5C.x<﹣1且x>5D.x<﹣1或x>5【考点】二次函数与不等式(组).【分析】先利用抛物线的对称性求出与x轴的另一个交点坐标,然后写出抛物线在x轴上方部分的x的取值范围即可.【解答】解:由图可知,抛物线的对称轴为直线x=2,与x轴的一个交点为(5,0),所以,抛物线与x轴的另一个交点坐标为(﹣1,0),所以,不等式ax2+bx+c>0的解集是﹣1<x<5.故选A.【点评】本题考查了二次函数与不等式,主要利用了二次函数的对称性,准确识图并求出抛物线与x轴的另一交点的坐标是解题的关键.10.如图,扇形AOB中,半径OA=2,∠AOB=120°,C是的中点,连接AC、BC,则图中阴影部分面积是()A.﹣2B.﹣2C.﹣D.﹣【考点】扇形面积的计算.【专题
本文标题:汕头市潮南区2016届九年级上期末数学试卷(B)含答案解析
链接地址:https://www.777doc.com/doc-7840365 .html