您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 四川省内江市2015-2016学年八年级上期末数学试卷含答案解析
四川省内江市2015~2016学年度八年级上学期期末数学试卷一、选择题:本大题共12小题,每小题4分,共48分.在每小题给出的A、B、C、D四个选项中,只有一项是符合题目要求的.1.的平方根是()A.±3B.3C.±9D.92.下列计算正确的是()A.(4a)2=8a2B.3a2•2a3=6a6C.(a3)8=(a6)4D.(﹣a)3÷(﹣a)2=a3.下列四组线段中,可以构成直角三角形的是()A.4,5,6B.1,,3C.2,3,4D.1.5,2,2.54.下列各式不能分解因式的是()A.2x2﹣4xB.1﹣m2C.x2D.x2+9y25.下列各命题中,逆命题是真命题的是()A.全等三角形的对应角相等B.如果两个数相等,那么它们的绝对值相等C.有理数是实数D.直角三角形的两个锐角互余6.如图,△ABC和△DEF中,AB=DE、∠B=∠DEF,添加下列哪一个条件无法证明△ABC≌△DEF()A.AC∥DFB.∠A=∠DC.AC=DFD.∠ACB=∠F7.某棉纺厂为了解一批棉花的质量,从中随机抽取了20根棉花纤维进行测量,其长度x(单位:mm)的数据分布如下表所示,则棉花纤维长度的数据在8≤x<32这个范围的频率为()棉花纤维长度x频数0≤x<818≤x<16216≤x<24824≤x<32632≤x<403A.0.8B.0.7C.0.4D.0.28.计算(﹣1)2013××1.52011的结果是()A.B.C.D.9.有一个数值转换器,程序如图所示,当输入的数为81时,输出的数y的值是()A.9B.3C.D.±10.已知a+b=2,则a2﹣b2+4b的值是()A.2B.3C.4D.611.请你计算:(1﹣x)(1+x),(1﹣x)(1+x+x2),…,猜想(1﹣x)(1+x+x2+…+xn)的结果是()A.1﹣xn+1B.1+xn+1C.1﹣xnD.1+xn12.如图,在长方形ABCD中,AB=1,E、F分别为AD、CD的中点,沿BE将△ABE折叠,若点A恰好落在BF上,则AD的长度为()A.B.2C.D.2二、填空题:本大题共4小题,每小题4分,共16分,请将最后答案直接填在题中横线上.13.的值为.14.分解因式:2x2﹣16xy+32y2=.15.若a、b、c是△ABC的三边,且a=5cm,b=12cm,c=13cm,则△ABC最大边上的高为cm.16.如图所示,点P1、P2、…P8在∠A的边上,若AP1=P1P2=P2P3=…=P6P7=P7P8=P8A,则∠A的度数是.三、解答题:本大题共6个小题,共56分,解答时应写出必要的文字说明或演算步骤.17.(1)计算:(2m2n)3•(﹣mn2)÷(﹣mn)2;(2)先化简,再求值:(2x+y)2﹣(2x﹣y)(2x+y)﹣4xy,其中x=2015,y=﹣1.18.如图,在离水面高度为5米的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为13米,此人以0.5米每秒的速度收绳,10秒后船移动到点D的位置,问船向岸边移动了多少米?(假设绳子是直的,结果保留根号)19.目前我市“校园手机”现象越来越受到社会关注,针对这种现象,我市某中学2016届九年级数学兴趣小组的同学随机调查了学校若干名家长对“中学生带手机”现象的看法,统计整理并制作了如下的统计图:(1)这次调查的家长总数为.家长表示“不赞同”的人数为;(2)求图②中表示家长“无所谓”的扇形圆心角的度数.20.如图,△ABC中,AB=BC,BE⊥AC于点E,AD⊥BC于点D,∠BAD=45°,AD与BE交于点F.(1)求证:△ADC≌△BDF;(2)求证:BF=2AE.21.观察下列式子:32+42=52;82+62=102;152+82=172;242+102=262;…(1)请你按以上规律写出接下来的第五个式子;(2)以(n2﹣1)、2n、(n2+1)(其中n>1)为三边长的三角形是否为直角三角形?请说明理由.22.如图,已知Rt△ABC中,∠C=90°,∠A=60°,AC=3cm,AB=6cm.点P在线段AC上以1cm/s的速度由点C向点A运动,同时,点Q在线段AB上以2cm/s由点A向点B运动,设运动时间为t(s).(1)当t=1时,判断△APQ的形状(可直接写出结论);(2)是否存在时刻t,使△APQ与△CQP全等?若存在,请求出t的值,并加以证明;若不存在,请说明理由;(3)若点P、Q以原来的运动速度分别从点C、A出发,都顺时针沿△ABC三边运动,则经过几秒后(结果可带根号),点P与点Q第一次在哪一边上相遇?并求出在这条边的什么位置.四川省内江市2015~2016学年度八年级上学期期末数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题4分,共48分.在每小题给出的A、B、C、D四个选项中,只有一项是符合题目要求的.1.的平方根是()A.±3B.3C.±9D.9【考点】平方根;算术平方根.【专题】计算题.【分析】根据平方运算,可得平方根、算术平方根.【解答】解:∵,9的平方根是±3,故选:A.【点评】本题考查了算术平方根,平方运算是求平方根的关键.2.下列计算正确的是()A.(4a)2=8a2B.3a2•2a3=6a6C.(a3)8=(a6)4D.(﹣a)3÷(﹣a)2=a【考点】同底数幂的除法;幂的乘方与积的乘方;单项式乘单项式.【分析】根据积的乘方等于乘方的积,单项式的乘法,系数乘系数、同底数的幂相乘;同底数幂的除法底数不变指数相减,可得答案.【解答】解:A、积的乘方等于乘方的积,故A错误;B、单项式的乘法,系数乘系数、同底数的幂相乘,故B错误;C、幂的乘方底数不变指数相乘,故C正确;D、同底数幂的除法底数不变指数相减,故D错误;故选:C.【点评】本题考查了同底数幂的除法,熟记法则并根据法则计算是解题关键.3.下列四组线段中,可以构成直角三角形的是()A.4,5,6B.1,,3C.2,3,4D.1.5,2,2.5【考点】勾股定理的逆定理.【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A、42+52≠62,不能构成直角三角形,故不符合题意;B、12+()2≠32,不能构成直角三角形,故不符合题意;C、32+22=42,不能构成直角三角形,故不符合题意;D、1.52+22=2.52,能构成直角三角形,故符合题意.故选:D.【点评】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.4.下列各式不能分解因式的是()A.2x2﹣4xB.1﹣m2C.x2D.x2+9y2【考点】因式分解-运用公式法;因式分解-提公因式法.【分析】根据因式分解是把一个多项式转化成几个整式乘积的形式,可得答案.【解答】解:A、2x2﹣4x=2x(x﹣2),故A不符合题意;B、1﹣m2=(1+m)(1﹣m),故B不符合题意;C、x2+x+=(x+)2故C不符合题意;D、x2+9y2不能分解因式,故D符合题意;故选:D.【点评】本题考查了因式分解,因式分解是把一个多项式转化成几个整式乘积的形式.5.下列各命题中,逆命题是真命题的是()A.全等三角形的对应角相等B.如果两个数相等,那么它们的绝对值相等C.有理数是实数D.直角三角形的两个锐角互余【考点】命题与定理.【分析】交换原命题的题设与结论得到各命题的逆命题,然后分别根据全等三角形的判定方法、绝对值的意义、实数的分类和直角三角形的定义判断各逆命题的真假.【解答】解:A、逆命题为对应角相等的两三角形全等,此逆命题为假命题;B、逆命题为绝对值相等的两个数相等,此逆命题为假命题;C、逆命题为实数都是有理数,此逆命题为假命题;D、逆命题为两个角互余的三角形为直角三角形,为此逆命题为真命题.故选D.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.也考查了逆命题.6.如图,△ABC和△DEF中,AB=DE、∠B=∠DEF,添加下列哪一个条件无法证明△ABC≌△DEF()A.AC∥DFB.∠A=∠DC.AC=DFD.∠ACB=∠F【考点】全等三角形的判定.【分析】根据全等三角形的判定定理,即可得出答.【解答】解:∵AB=DE,∠B=∠DEF,∴添加AC∥DF,得出∠ACB=∠F,即可证明△ABC≌△DEF,故A、D都正确;当添加∠A=∠D时,根据ASA,也可证明△ABC≌△DEF,故B正确;但添加AC=DF时,没有SSA定理,不能证明△ABC≌△DEF,故C不正确;故选:C.【点评】本题考查了全等三角形的判定定理,证明三角形全等的方法有:SSS,SAS,ASA,AAS,还有直角三角形的HL定理.7.某棉纺厂为了解一批棉花的质量,从中随机抽取了20根棉花纤维进行测量,其长度x(单位:mm)的数据分布如下表所示,则棉花纤维长度的数据在8≤x<32这个范围的频率为()棉花纤维长度x频数0≤x<818≤x<16216≤x<24824≤x<32632≤x<403A.0.8B.0.7C.0.4D.0.2【考点】频数(率)分布表.【专题】图表型.【分析】求得在8≤x<32这个范围的频数,根据频率的计算公式即可求解.【解答】解:在8≤x<32这个范围的频数是:2+8+6=16,则在8≤x<32这个范围的频率是:=0.8.故选;A.【点评】本题考查了频数分布表,用到的知识点是:频率=频数÷总数.8.计算(﹣1)2013××1.52011的结果是()A.B.C.D.【考点】幂的乘方与积的乘方.【分析】根据幂的乘方和积的乘方的运算法则求解.【解答】解:原式=(﹣1)×(﹣×1.5)2011×(﹣)=﹣.故选A.【点评】本题考查了幂的乘方和积的乘方,解答本题的关键是掌握幂的乘方和积的乘方的运算法则.9.有一个数值转换器,程序如图所示,当输入的数为81时,输出的数y的值是()A.9B.3C.D.±【考点】算术平方根.【专题】图表型;实数.【分析】把x=81代入数值转换器中计算即可得到输出数y.【解答】解:把x=81代入得:=9,把x=9代入得:=3,把x=3代入得:y=,故选:C.【点评】此题考查了算术平方根,弄清题中数值转换器中的运算是解本题的关键.10.已知a+b=2,则a2﹣b2+4b的值是()A.2B.3C.4D.6【考点】因式分解的应用.【分析】把a2﹣b2+4b变形为(a﹣b)(a+b)+4b,代入a+b=2后,再变形为2(a+b)即可求得最后结果.【解答】解:∵a+b=2,∴a2﹣b2+4b=(a﹣b)(a+b)+4b,=2(a﹣b)+4b,=2a﹣2b+4b,=2(a+b),=2×2,=4.故选C.【点评】本题考查了代数式求值的方法,同时还利用了整体思想.11.请你计算:(1﹣x)(1+x),(1﹣x)(1+x+x2),…,猜想(1﹣x)(1+x+x2+…+xn)的结果是()A.1﹣xn+1B.1+xn+1C.1﹣xnD.1+xn【考点】平方差公式;多项式乘多项式.【专题】规律型.【分析】已知各项利用多项式乘以多项式法则计算,归纳总结得到一般性规律,即可得到结果.【解答】解:(1﹣x)(1+x)=1﹣x2,(1﹣x)(1+x+x2)=1+x+x2﹣x﹣x2﹣x3=1﹣x3,…,依此类推(1﹣x)(1+x+x2+…+xn)=1﹣xn+1,故选:A【点评】此题考查了平方差公式,多项式乘多项式,找出规律是解本题的关键.12.如图,在长方形ABCD中,AB=1,E、F分别为AD、CD的中点,沿BE将△ABE折叠,若点A恰好落在BF上,则AD的长度为()A.B.2C.D.2【考点】翻折变换(折叠问题).【分析】连接EF,则可证明△EA′F≌△EDF,从而根据BF=BA′+A′F,得出BF的长,在Rt△BCF中,利用勾股定理可求出BC,即得AD的长度.【解答】解:如图所示:连接EF.∵点E、点F是AD、DC的中点,∴AE
本文标题:四川省内江市2015-2016学年八年级上期末数学试卷含答案解析
链接地址:https://www.777doc.com/doc-7840567 .html