您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 唐山市滦县2017届九年级上期末数学试卷含答案解析
2016-2017学年河北省唐山市滦县九年级(上)期末数学试卷一、选择题(本大题共16个小题,共42分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.方程x2+2x=3的根是()A.x1=1,x2=﹣3B.x1=﹣1,x2=3C.x1=﹣1+,x2=﹣1﹣D.x1=1+,x2=1﹣2.如图,由下列条件不能判定△ABC与△ADE相似的是()A.=B.∠B=∠ADEC.=D.∠C=∠AED3.如图,四边形ABCD是⊙O的内接四边形,若∠BOD=88°,则∠BCD的度数是()A.88°B.92°C.106°D.136°4.如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:甲乙丙丁平均数(cm)185180185180方差3.63.67.48.1根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择()A.甲B.乙C.丙D.丁5.已知Rt△ABC中,∠C=90°,AC=3,BC=4,若以2为半径作⊙C,则斜边AB与⊙C的位置关系是()A.相交B.相切C.相离D.无法确定6.反比例函数y=的两个点为(x1,y1)、(x2,y2),且x1>x2>0,则下式关系成立的是()A.y1>y2B.y1<y2C.y1=y2D.不能确定7.已知⊙O的半径为1,点A到圆心O的距离为a,若关于x的方程x2﹣2x+a=0不存在实数根,则点A与⊙O的位置关系是()A.点A在⊙O外B.点A在⊙O上C.点A在⊙O内D.无法确定8.如图,已知⊙O的半径为5,弦AB=6,M是AB上任意一点,则线段OM的长可能是()A.2.5B.3.5C.4.5D.5.59.反比例函数y=的图象如图所示,以下结论:①常数m<﹣1;②在每个象限内,y随x的增大而增大;③若A(﹣1,h),B(2,k)在图象上,则h<k;④若P(x,y)在图象上,则P′(﹣x,﹣y)也在图象上.其中正确的是()A.①②B.②③C.③④D.①④10.如图,在Rt△ABC中,∠C=90°,BC=4,AC=3,CD⊥AB于D,设∠ACD=α,则cosα的值为()A.B.C.D.11.如图,函数y=ax2+bx+c(a≠0)的图象与x轴相交于A、B两点,頂点为点M.則下列说法不正确的是()A.a<0B.当x=﹣1时,函数y有最小值4C.对称轴是直线=﹣1D.点B的坐标为(﹣3,0)12.如图,沿一条母线将圆锥侧面剪开并展开,得到一个扇形,若圆锥的底面圆的半径r=2cm,扇形的圆心角θ=120°,则该圆锥的母线长为()A.6cmB.7cmC.8cmD.9cm13.如图,AB是⊙O的直径,弦CD⊥AB,∠C=30°,CD=2.则S阴影=()A.πB.2πC.D.π14.如图,AD=DF=FB,DE∥FG∥BC,且把三角形ABC分成面积为S1,S2,S3三部分,则S1:S2:S3=()A.1:2:3B.1:4:9C.1:3:5D.无法确定15.如图,AB∥GH∥CD,点H在BC上,AC与BD交于点G,AB=2,CD=3,则GH长为()A.1B.1.2C.2D.2.516.如图,抛物线y1=a(x+2)2﹣3与y2=(x﹣3)2+1交于点A(1,3),过点A作x轴的平行线,分别交两条抛物线于点B,C.则以下结论:①无论x取何值,y2的值总是正数;②a=1;③当x=0时,y2﹣y1=4;④2AB=3AC;其中正确结论是()A.①②B.②③C.③④D.①④二、填空题(本大题共4小题,每小题3分,共12分)17.一台机器原价60万元,两年后这台机器的价格为48.6万元,如果每年的折旧率相同,则这台机器的折旧率为.18.如图,已知O是坐标原点,以O点为位似中心在y轴的左侧将△OBC放大两倍(即新图与原图的相似比为2),则B(3,﹣1)的对称点的坐标为.19.如图,小明同学测量一个光盘的直径,他只有一把直尺和一块三角板,他将直尺、光盘和三角板如图放置于桌面上,并量出AB=3cm,则此光盘的直径是cm.20.如图,把抛物线y=x2平移得到抛物线m,抛物线m经过点A(﹣6,0)和原点O(0,0),它的顶点为P,它的对称轴与抛物线y=x2交于点Q,则图中阴影部分的面积为.三、解答题(本大题共6小题,共66分)21.如图,已知A(﹣4,n),B(2,﹣4)是一次函数y=kx+b的图象和反比例函数y=的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)求△AOB的面积;(3)根据图象直接写出不等式kx+b<时x的解集.22.小明在热气球A上看到正前方横跨河流两岸的大桥BC,并测得B,C两点的俯角分别为45°,35°.已知大桥BC与地面在同一水平面上,其长度为100m,请求出热气球离地面的高度.(结果保留整数)(参考数据:sin35°≈,cos35°≈,tan35°≈)23.某校260名学生参加植树活动,要求每人植4﹣7棵,活动结束后随机抽查了20名学生每人的植树量,并分为四种类型,A:4棵;B:5棵;C:6棵;D:7棵,将各类的人数绘制成扇形图(如图(1))和条形图(如图(2)),经确认扇形图是正确的,而条形图尚有一处错误.回答下列问题:(1)写出条形图中存在的错误,并说明理由;(2)写出这20名学生每人植树量的众数、中位数;(3)在求这20名学生每人植树量的平均数时,小宇是这样分析的:第一步:求平均数的公式是=;第二步:在该问题中,n=4,x1=4,x2=5,x3=6,x4=7;第三步:==5.5(份)①小宇的分析是从哪一步开始出现错误的?②请你帮他计算出正确的平均数,并估计这260名学生共植树多少棵.24.某宾馆客房部有60个房间供游客居住,当每个房间的定价为每天200元时,房间可以住满.当每个房间每天的定价每增加10元时,就会有一个房间空闲.对有游客入住的房间,宾馆需对每个房间每天支出20元的各种费用.设每个房间每天的定价增加x元.求:(1)房间每天的入住量y(间)关于x(元)的函数关系式;(2)该宾馆每天的房间收费p(元)关于x(元)的函数关系式;(3)该宾馆客房部每天的利润w(元)关于x(元)的函数关系式;当每个房间的定价为每天多少元时,w有最大值?最大值是多少?25.已知,如图,直线MN交⊙O于A,B两点,AC是直径,AD平分∠CAM交⊙O于D,过D作DE⊥MN于E.(1)求证:DE是⊙O的切线;(2)若DE=6cm,AE=3cm,求⊙O的半径.(3)在(2)的条件下,直接写出tan∠CAB的值.26.如图,抛物线L:y=﹣(x﹣t)(x﹣t+4)(常数t>0)与x轴从左到右的交点为B,A,过线段OA的中点M作MP⊥x轴,交双曲线y=(k>0,x>0)于点P,且OA•MP=12.(1)求k的值;(2)当t=1时,求AB长,并求直线MP与L对称轴之间的距离;(3)把L在直线MP左侧部分的图象(含与直线MP的交点)记为G,用t表示图象G最高点的坐标.2016-2017学年河北省唐山市滦县九年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共16个小题,共42分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.方程x2+2x=3的根是()A.x1=1,x2=﹣3B.x1=﹣1,x2=3C.x1=﹣1+,x2=﹣1﹣D.x1=1+,x2=1﹣【考点】解一元二次方程-配方法.【分析】两边配上一次项系数一半的平方,写成完全平方式后再开方即可得.【解答】解:解法一:∵x2+2x=3,∴x2+2x+1=3+1,即(x+1)2=4,∴x+1=2或x+1=﹣2,解得:x1=1,x2=﹣3,解法二:∵x2+2x﹣3=0,∴(x﹣1)(x+3)=0,则x﹣1=0或x+3=0,解得:x=1或x=﹣3,故选:A.2.如图,由下列条件不能判定△ABC与△ADE相似的是()A.=B.∠B=∠ADEC.=D.∠C=∠AED【考点】相似三角形的判定.【分析】利用两组对应边的比相等且夹角对应相等的两个三角形相似可对A、C进行判断;根据有两组角对应相等的两个三角形相似可对B、C进行判断.【解答】解:∵∠EAD=∠BAC,∴当∠AED=∠C时,△AED∽△ACB;当∠AED=∠B时,△AED∽△ABC;当=时,△AED∽△ABC;当=时,△AED∽△ACB.故选C.3.如图,四边形ABCD是⊙O的内接四边形,若∠BOD=88°,则∠BCD的度数是()A.88°B.92°C.106°D.136°【考点】圆内接四边形的性质;圆周角定理.【分析】首先根据∠BOD=88°,应用圆周角定理,求出∠BAD的度数多少;然后根据圆内接四边形的性质,可得∠BAD+∠BCD=180°,据此求出∠BCD的度数是多少即可.【解答】解:∵∠BOD=88°,∴∠BAD=88°÷2=44°,∵∠BAD+∠BCD=180°,∴∠BCD=180°﹣44°=136°,即∠BCD的度数是136°.故选:D.4.如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:甲乙丙丁平均数(cm)185180185180方差3.63.67.48.1根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择()A.甲B.乙C.丙D.丁【考点】方差;算术平均数.【分析】首先比较平均数,平均数相同时选择方差较小的运动员参加.【解答】解:∵=>=,∴从甲和丙中选择一人参加比赛,∵=<<,∴选择甲参赛,故选:A.5.已知Rt△ABC中,∠C=90°,AC=3,BC=4,若以2为半径作⊙C,则斜边AB与⊙C的位置关系是()A.相交B.相切C.相离D.无法确定【考点】直线与圆的位置关系;勾股定理.【分析】根据题意可求得直角三角形斜边上的高,再根据直线和圆的位置关系,判断圆心到直线AB的距离与2的大小关系,从而确定⊙C与AB的位置关系.【解答】解:由勾股定理得AB=5,再根据三角形的面积公式得,3×4=5×斜边上的高,∴斜边上的高=,∵>2,∴⊙C与AB相离.故选:C.6.反比例函数y=的两个点为(x1,y1)、(x2,y2),且x1>x2>0,则下式关系成立的是()A.y1>y2B.y1<y2C.y1=y2D.不能确定【考点】反比例函数图象上点的坐标特征.【分析】先根据反比例函数的性质判断出函数图象所在象限,再由x1>x2>0判断出两点所在的象限,再根据函数的增减性即可得出结论.【解答】解:∵反比例函数y=中k=2>0,∴函数图象的两个分支分别在一、三象限,∵x1>x2>0,∴点(x1,y1)、(x2,y2)在第一象限,∵在每一象限内y随x的增大而减小,∴y1<y2.故选B.7.已知⊙O的半径为1,点A到圆心O的距离为a,若关于x的方程x2﹣2x+a=0不存在实数根,则点A与⊙O的位置关系是()A.点A在⊙O外B.点A在⊙O上C.点A在⊙O内D.无法确定【考点】点与圆的位置关系;根的判别式.【分析】根据点到圆心的距离与圆的半径之间的关系:“点到圆心的距离为d,则当d=r时,点在圆上;当d>r时,点在圆外;当d<r时,点在圆内”来求解.【解答】解:由题意,得△=b2﹣4ac=4﹣4a<0,解得a>1,a>r时,点在圆外,故选:A.8.如图,已知⊙O的半径为5,弦AB=6,M是AB上任意一点,则线段OM的长可能是()A.2.5B.3.5C.4.5D.5.5【考点】垂径定理;勾股定理.【分析】根据ON<OM<OA求出OM的取值范围,再进行估算.【解答】解:作ON⊥AB,根据垂径定理,AN=AB=×6=3,根据勾股定理,ON===4,则ON≤OM≤OA,4≤OM≤5,只有C符合条件.故选C.9.反比例函数y=的图象如图所示,以下结论:①常数m<﹣1;②在每个象限内,y随x的增大而增大;③若A(﹣1,h),B(2,k)在图象上,则h<k;④若P(x,y)在图象上,则P′(﹣x,﹣y)也在图象上.其中正确的是()A.①②B.②③C.③④D.①④【考点】反比例函数的性质.【分析】根据反比例函数的图象的位置确定其比例系数的符号,利用反比例函数的性质进行判断即可.【解答】解:∵反比例函数的图象位于一三象限,∴m>0故①错误;当反比
本文标题:唐山市滦县2017届九年级上期末数学试卷含答案解析
链接地址:https://www.777doc.com/doc-7840679 .html