您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 天津市河北区2016-2017学年九年级上期末模拟试题(2)及答案
2016-2017年九年级数学上册期末模拟题一、选择题(本大题共10小题,每小题3分,共30分。在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.已知反比例函数的图象过点P(1,3),则该反比例函数图象位于()A.第一、二象限B.第一、三象限C.第二、四象限D.第三、四象限2.下列说法正确的是()A.分别在△ABC的边AB.AC的反向延长线上取点D,E,使DE∥BC,则△ADE是△ABC放大后的图形B.两位似图形的面积之比等于位似比C.位似多边形中对应对角线之比等于位似比D.位似图形的周长之比等于位似比的平方3.有一种推理游戏叫做“天黑请闭眼”,9位同学参与游戏,通过抽牌决定所扮演的角色,事先做好9张卡牌(除所写文字不同,其余均相同),其中有法官牌1张,杀手牌2张,好人牌6张.小易参与游戏,如果只随机抽取一张,那么小易抽到杀手牌的概率是()A.B.C.D.4.如图,AD∥BE∥CF,直线l1、l2与这三条平行线分别交于点A、B、C和点D、E、F.已知AB=1,BC=3,DE=2,则EF的长为()A.4B.5C.6D.85.抛物线y=ax2+bx+c的图象如图所示,则一次函数y=ax+b与反比例函数y=在同一平面直角坐标系内的图象大致为()A.B.C.D.6.如图,△ABC中,∠A=78°,AB=4,AC=6.将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()7.在Rt△ABC中,∠ACB=90°,AC=2,以点B为圆心,BC的长为半径作弧,交AB于点D,若点D为AB的中点,则阴影部分的面积是()A.2﹣πB.4﹣πC.2﹣πD.π8.在一个不透明的盒子中装有n个小球,它们除了颜色不同外,其余都相同,其中有4个白球,每次试验前,将盒子中的小球摇匀,随机摸出一个球记下颜色后再放回盒中.大量重复上述试验后发现,摸到白球的频率稳定在0.4,那么可以推算出n大约是()A.10B.14C.16D.409.如图,AD为等边△ABC边BC上的高,AB=4,AE=1,P为高AD上任意一点,则EP+BP的最小值为()A.B.C.D.10.如图,直线y=k和双曲线相交于点P,过点P作PA0垂直于x轴,垂足为A0,x轴上的点A0,A1,A2,…An的横坐标是连续整数,过点A1,A2,…An:分别作x轴的垂线,与双曲线(k>0)及直线y=k分别交于点B1,B2,…Bn和点C1,C2,…Cn,则的值为()A.B.C.D.二、填空题(本大题共8小题,每小题3分,共24分)11.把抛物线y=ax2+bx+c的图象先向右平移3个单位长度,再向下平移2个单位长度,所得图象的解析式是y=x2-4x+5,则a+b+c=.12.如图,点A是反比例函数图象上的一个动点,过点A作AB⊥x轴,AC⊥y轴,垂足分别为B、C,矩形ABOC的面积为4,则k=________.13.如图是一个能自由转动的正六边形转盘,这个转盘被三条分割线分成形状相同,面积相等的三部分,且分别标有“1”“2”“3”三个数字,指针的位置固定不动.让转盘自动转动两次,当指针指向的数都是奇数的概率为14.在一个不透明的盒子中装有12个白球,若干个黄球,这些球除颜色外都相同.若从中随机摸出一个球是白球的概率是,则黄球的个数为个.15.如图,在△ABC中点D、E分别在边AB、AC上,请添加一个条件:,使△ABC∽△AED.16.如图,⊙O的半径为1cm,正六边形ABCDEF内接于⊙O,则图中阴影部分面积为cm2.(结果保留π)17.从﹣,﹣1,0,1这四个数中,任取一个数作为m的值,恰好使得关于x,y的二元一次方程组有整数解,且使以x为自变量的一次函数y=(m+1)x+3m﹣3的图象不经过第二象限,则取到满足条件的m值的概率为.18.如图,一次函数y=﹣x+b与反比例函数y=(x>0)的图象交于A,B两点,与x轴、y轴分别交于C,D两点,连结OA,OB,过A作AE⊥x轴于点E,交OB于点F,设点A的横坐标为m.(1)b=(用含m的代数式表示);(2)若S△OAF+S四边形EFBC=4,则m的值是.三、解答题(本大题共5小题,共36分)19.如图,在平面直角坐标系中,反比例函数的图象与一次函数y=x+2的图象的一个交点为A(m,-1).(1)求反比例函数的解析式;(2)设一次函数y=x+2的图象与y轴交于点B,若P是y轴上一点,且满足△PAB的面积是3,直接写出点P的坐标.20.如图,已知AC⊥AB,BD⊥AB,AO=78cm,BO=42cm,CD=159cm,求CO和DO.21.如图,AB是⊙O的直径,AF是⊙O切线,CD是垂直于AB的弦,垂足为E,过点C作DA的平行线与AF相交于点F,CD=,BE=2.求证:(1)四边形FADC是菱形;(2)FC是⊙O的切线.22.如图,某学校九年级数学兴趣小组组织一次数学活动.在一座有三道环形路的数字迷宫的每个进口处都标记着一个数,要求进入者把自己当做数“1”,进入时必须乘进口处的数,并将结果带到下一个进口,依次累乘下去,在通过最后一个进口时,只有乘积是5的倍数,才可以进入迷宫中心,现让一名5岁小朋友小军从最外环任一个进口进入.(1)小军能进入迷宫中心的概率是多少?请画出树状图进行说明.(2)小组两位组员小张和小李商量做一个小游戏,以猜测小军进迷宫的结果比胜负.游戏规则规定:小军如果能进入迷宫中心,小张和小李各得1分;小军如果不能进入迷宫中心,则他在最后一个进口处所得乘积是奇数时,小张得3分,所得乘积是偶数时,小李得3分,你认为这个游戏公平吗?如果公平,请说明理由;如果不公平,请在第二道环进口处的两个数中改变其中一个数使游戏公平.23.如图,已知在△ABC中,AB=AC,以AC为直径的⊙O交AB于点M,交BC于点N,连接AN,过点C的切线交AB的延长线于点P.(1)求证:∠BCP=∠BAN;(2)求证:.24.如图,已知矩形OABC中,OA=2,AB=4,双曲线(k0)与矩形两边AB、BC分别交于E、F。(1)若E是AB的中点,求F点的坐标;(2)若将△BEF沿直线EF对折,B点落在x轴上的D点,作EG⊥OC,垂足为G,证明:△EGD∽△DCF,并求k的值.2016-2017年九年级数学上册期末模拟题答案1.B2.C3.C4.C5.B.6.C7.A.8.A9.B10.【解答】解:∵A1,A2,…An为连续整数,又∵直线y=k和双曲线相交于点P的横坐标为1,∴从A0开始,为1,2,3…,n+1,代入y=,得yn=,即AnBn=,CnBn=k﹣,AnBn÷CnBn=÷(k﹣)=.故选C.11.略12.略13.概率为14.24;15.∠AEB=∠B(答案不唯一)16.答案为:.17.18.【解答】解:(1)∵点A在反比例函数y=(x>0)的图象上,且点A的横坐标为m,∴点A的纵坐标为,即点A的坐标为(m,).令一次函数y=﹣x+b中x=m,则y=﹣m+b,∴﹣m+b=即b=m+.故答案为:m+.(2)作AM⊥OD于M,BN⊥OC于N.∵反比例函数y=,一次函数y=﹣x+b都是关于直线y=x对称,∴AD=BC,OD=OC,DM=AM=BN=CN,记△AOF面积为S,则△OEF面积为2﹣S,四边形EFBN面积为4﹣S,△OBC和△OAD面积都是6﹣2S,△ADM面积为4﹣2S=2(2﹣s),∴S△ADM=2S△OEF,∴EF=AM=NB,∴点B坐标(2m,)代入直线y=﹣x+m+,∴=﹣2m=m+,整理得到m2=2,∵m>0,∴m=.故答案为.19.20.略21.【解答】证明:(1)连接OC,∵AB是⊙O的直径,CD⊥AB,∴CE=DE=CD=×4=2,设OC=x,∵BE=2,∴OE=x﹣2,在Rt△OCE中,OC2=OE2+CE2,∴x2=(x﹣2)2+(2)2,解得:x=4,∴OA=OC=4,OE=2,∴AE=6,在Rt△AED中,AD==4,∴AD=CD,∵AF是⊙O切线,∴AF⊥AB,∵CD⊥AB,∴AF∥CD,∵CF∥AD,∴四边形FADC是平行四边形,∵AD=CD,∴平行四边形FADC是菱形;(2)连接OF,AC,∵四边形FADC是菱形,∴FA=FC,∴∠FAC=∠FCA,∵AO=CO,∴∠OAC=∠OCA,∴∠FAC+∠OAC=∠FCA+∠OCA,即∠OCF=∠OAF=90°,即OC⊥FC,∵点C在⊙O上,∴FC是⊙O的切线.22.23.24.
本文标题:天津市河北区2016-2017学年九年级上期末模拟试题(2)及答案
链接地址:https://www.777doc.com/doc-7840739 .html