您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 梧州市岑溪市2017-2018学年八年级上期末数学试卷(含答案解析)
2017-2018学年广西梧州市岑溪市八年级(上)期末数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)在平面直角坐标系中,点(﹣1,﹣2)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限2.(3分)我国主要银行的商标设计基本上都融入了中国古代钱币的图案,如图是我国四个银行的商标图案,其中是轴对称图形的有()A.①②③B.①②④C.①③④D.②③④3.(3分)在下列长度的四根木棒中,能与4cm、9cm长的两根木棒钉成一个三角形的是()A.4cmB.5cmC.9cmD.13cm4.(3分)点A(﹣3,2)关于x轴的对称点A′的坐标为()A.(﹣3,﹣2)B.(3,2)C.(3,﹣2)D.(2,﹣3)5.(3分)等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为()A.60°B.120°C.60°或150°D.60°或120°6.(3分)已知P1(﹣3,y1),P2(2,y2)是一次函数y=2x﹣b的图象上的两个点,则y1,y2的大小关系是()A.y1<y2B.y1=y2C.y1>y2D.不能确定7.(3分)如图,已知∠ADB=∠ADC,欲证△ABD≌△ACD,还必须从下列选项中选一个补充条件,其中错误的选项是()A.∠BAD=∠CADB.AB=ACC.BD=CDD.∠B=∠C8.(3分)如图,在△ABC中,∠ACB=90°,BE平分∠ABC,ED⊥AB于D.如果∠A=30°,AE=6cm,那么CE等于()A.cmB.2cmC.3cmD.4cm9.(3分)如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是()A.三角形的稳定性B.两点之间线段最短C.两点确定一条直线D.垂线段最短10.(3分)如图,△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB,PS⊥AC,垂足分别是R、S,若AQ=PQ,PR=PS,下面三个结论:①AS=AR②QP∥AR③△BRP≌△QSP.其中正确的是()A.①③B.②③C.①②D.①②③二、填空题(每小题3分,共24分)11.(3分)函数y=中,自变量x的取值范围是.12.(3分)将点(1,2)向左平移1个单位,再向下平移2个单位后得到对应点的坐标是.13.(3分)如图,△ABC中,DE是AC的垂直平分线,AE=5,△ABC的周长是30,则△ABD的周长是.14.(3分)小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一块带去,就能配一块与原来一样大小的三角形?应该带第块.15.(3分)如图,线段AD与BC相交于点O,连接AB、CD,且OB=OD,要使△AOB≌△COD,应添加一个条件是(只填一个即可).16.(3分)写一个图象交y轴于点(0,﹣3),且y随x的增大而增大的一次函数关系式.17.(3分)如图,把两根钢条的中点连在一起,可以做成一个测量工件内槽宽的工具(卡钳).在图中,只要量出CD的长,就能求出工件内槽的宽,依据是.18.(3分)如图,已知△ABC的角平分线CD交AB于D,DE∥BC交AC于E,若DE=3,AE=4,则AC=.三.解答题(46分)19.(6分)△ABC在平面直角坐标系中的位置如图所示.(1)作出△ABC关于y轴对称的△A1B1C1;并写出△A1B1C1各顶点的坐标;(2)将△ABC向右平移6个单位,再向下平移1个单位:作出平移后的△A2B2C220.(6分)已知:如图,∠1=∠2,∠C=∠D.求证:△ABC≌△ABD.21.(8分)为了保护学生的视力,课桌的高度m与椅子的高度xcm(不含靠背)都是按y是x的一次函数关系配套设计的,如表列出了两套符合条件课桌椅的高度:第一套第二套椅子高度xcm40.038.0课桌高度ycm75.070.2(1)请求出y与x的函数关系式(不要求写出x的取值范围);(2)现有一把高42.0cm的椅子和一张高78.2cm的课桌,它们是否配套?请通过计算说明理由.22.(8分)“佳园工艺店”打算制作一批有两边长分别是7分米,3分米,第三边长为奇数(单位:分米)的不同规格的三角形木框.(1)要制作满足上述条件的三角形木框共有种.(2)若每种规格的三角形木框只制作一个,制作这种木框的木条的售价为8元╱分米,问至少需要多少钱购买材料?(忽略接头)23.(8分)如图,AC是某座大桥的一部分,DC部分因受台风侵袭已垮塌,为了修补这座大桥,需要对DC的长进行测量,测量人员在没有垮塌的桥上选取两点A和D,在C处对岸立着的桥墩上选取一点B(BC⊥AC),然后测得∠A=30°,∠ADB=120°,AD=60m.求DC的长.24.(10分)已知:如图,AB,CD相交于点O,AC∥DB,OC=OD,E,F为AB上两点,且AE=BF.求证:CE∥DF.2017-2018学年广西梧州市岑溪市八年级(上)期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)在平面直角坐标系中,点(﹣1,﹣2)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据横纵坐标的符号可得相关象限.【解答】解:∵点的横纵坐标均为负数,∴点(﹣1,﹣2)所在的象限是第三象限.故选:C.【点评】考查点的坐标的相关知识;用到的知识点为:横纵坐标均为负数的点在第三象限.2.(3分)我国主要银行的商标设计基本上都融入了中国古代钱币的图案,如图是我国四个银行的商标图案,其中是轴对称图形的有()A.①②③B.①②④C.①③④D.②③④【分析】根据轴对称的定义,结合所给图形进行判断即可.【解答】解:①不是轴对称图形;②是轴对称图形;③是轴对称图形;④是轴对称图形;故是轴对称图形的是②③④.故选:D.【点评】本题考查了轴对称图形的知识,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.(3分)在下列长度的四根木棒中,能与4cm、9cm长的两根木棒钉成一个三角形的是()A.4cmB.5cmC.9cmD.13cm【分析】易得第三边的取值范围,看选项中哪个在范围内即可.【解答】解:设第三边为c,则9+4>c>9﹣4,即13>c>5.只有9符合要求.故选:C.【点评】已知三角形的两边,则第三边的范围是:大于已知的两边的差,而小于两边的和.4.(3分)点A(﹣3,2)关于x轴的对称点A′的坐标为()A.(﹣3,﹣2)B.(3,2)C.(3,﹣2)D.(2,﹣3)【分析】利用关于x轴对称点的性质,横坐标不变,纵坐标互为相反数.即点P(x,y)关于x轴的对称点P′的坐标是(x,﹣y),进而得出答案.【解答】解:∵点A(﹣3,2)关于x轴的对称点为A′,∴A′点的坐标为:(﹣3,﹣2).故选:A.【点评】此题主要考查了关于x轴对称点的性质,正确把握横纵坐标的关系是解题关键.5.(3分)等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为()A.60°B.120°C.60°或150°D.60°或120°【分析】等腰三角形的高相对于三角形有三种位置关系,三角形内部,三角形的外部,三角形的边上.根据条件可知第三种高在三角形的边上这种情况不成了,因而应分两种情况进行讨论.【解答】解:当高在三角形内部时(如图1),顶角是60°;当高在三角形外部时(如图2),顶角是120°.故选:D.【点评】此题主要考查了等腰三角形的性质,熟记三角形的高相对于三角形的三种位置关系是解题的关键,本题易出现的错误是只是求出120°一种情况,把三角形简单的认为是锐角三角形.6.(3分)已知P1(﹣3,y1),P2(2,y2)是一次函数y=2x﹣b的图象上的两个点,则y1,y2的大小关系是()A.y1<y2B.y1=y2C.y1>y2D.不能确定【分析】利用一次函数图象上点的坐标特征求出y1、y2的值,比较后即可得出结论.【解答】解:∵P1(﹣3,y1)、P2(2,y2)是一次函数y=2x﹣b的图象上的两个点,∴y1=﹣6﹣b,y2=4﹣b.∵﹣6﹣b<4﹣b,∴y1<y2.故选:A.【点评】本题考查了一次函数图象上点的坐标特征,牢记直线上任意一点的坐标都满足函数关系式y=kx+b是解题的关键.7.(3分)如图,已知∠ADB=∠ADC,欲证△ABD≌△ACD,还必须从下列选项中选一个补充条件,其中错误的选项是()A.∠BAD=∠CADB.AB=ACC.BD=CDD.∠B=∠C【分析】全等三角形的判定定理有SAS,ASA,AAS,SSS,根据定理逐个判断即可.【解答】解:A、∵∠ADB=∠ADC,∠BAD=∠CAD,AD=AD,利用ASA可以证明△ABD≌△ACD,正确;B、∵∠ADB=∠ADC,AD=AD,AB=AC,不能证明△ABD≌△ACD,错误;C、∵∠ADB=∠ADC,AD=AD,BD=CD,利用SAS能证明△ABD≌△ACD,正确;D、∵∠ADB=∠ADC,∠B=∠C,AD=AD,利用AAS可以证明△ABD≌△ACD,正确;故选:B.【点评】本题考查了全等三角形的判定定理的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.8.(3分)如图,在△ABC中,∠ACB=90°,BE平分∠ABC,ED⊥AB于D.如果∠A=30°,AE=6cm,那么CE等于()A.cmB.2cmC.3cmD.4cm【分析】根据在直角三角形中,30度所对的直角边等于斜边的一半得出AE=2ED,求出ED,再根据角平分线到两边的距离相等得出ED=CE,即可得出CE的值.【解答】解:∵ED⊥AB,∠A=30°,∴AE=2ED,∵AE=6cm,∴ED=3cm,∵∠ACB=90°,BE平分∠ABC,∴ED=CE,∴CE=3cm;故选:C.【点评】此题考查了含30°角的直角三角形,用到的知识点是在直角三角形中,30度所对的直角边等于斜边的一半和角平分线的基本性质,关键是求出ED=CE.9.(3分)如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是()A.三角形的稳定性B.两点之间线段最短C.两点确定一条直线D.垂线段最短【分析】根据加上窗钩,可以构成三角形的形状,故可用三角形的稳定性解释.【解答】解:构成△AOB,这里所运用的几何原理是三角形的稳定性.故选:A.【点评】本题考查三角形的稳定性在实际生活中的应用问题.三角形的稳定性在实际生活中有着广泛的应用.10.(3分)如图,△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB,PS⊥AC,垂足分别是R、S,若AQ=PQ,PR=PS,下面三个结论:①AS=AR②QP∥AR③△BRP≌△QSP.其中正确的是()A.①③B.②③C.①②D.①②③【分析】根据角平分线性质即可推出①,根据勾股定理即可推出AR=AS,根据等腰三角形性质推出∠QAP=∠QPA,推出∠QPA=∠BAP,根据平行线判定推出QP∥AB即可;在Rt△BRP和Rt△QSP中,只有PR=PS.无法判断△BRP≌△QSP.【解答】解:①∵PR⊥AB,PS⊥AC,PR=PS,∴点P在∠A的平分线上,∠ARP=∠ASP=90°,∴∠SAP=∠RAP,在Rt△ARP和Rt△ASP中,由勾股定理得:AR2=AP2﹣PR2,AS2=AP2﹣PS2,∵AD=AD,PR=PS,∴AR=AS,∴①正确;②∵AQ=QP,∴∠QAP=∠QPA,∵∠QAP=∠BAP,∴∠QPA=∠BAP,∴QP∥AR,∴②正确;③在Rt△BRP和Rt△QSP中,只有PR=PS,不满足三角形全等的条件,故③错误故选:C.【点评】本题考查了全等三角形的性质和判定,平行线的判定,角平分线性质的应用,熟练掌握全等三角形的判定和性质是解题的关键.二、填空题(每小题3分,共24分)11.(3分)函数y=中,自变量x的取值范围是x≤4.【分析】根据二次根式的性质,被开方数大于或等于0,可以求出x的范围.【解答】解:根据题意得:4﹣x≥0,解得:x≤4.故答案是:x≤4.【点评】本题考查了求函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分
本文标题:梧州市岑溪市2017-2018学年八年级上期末数学试卷(含答案解析)
链接地址:https://www.777doc.com/doc-7840886 .html