您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 咸宁市赤2016届九年级下月考数学试卷(3月)含答案解析
2015-2016学年湖北省咸宁市九年级(下)月考数学试卷(3月份)一、选择题1.﹣3的倒数为()A.﹣B.C.3D.﹣32.如图,正比例函数y=kx(k>0)与反比例函数y=的图象相交于A、C两点,过A作x轴的垂线,交x轴于点B,连接BC.若△ABC的面积为S,则()A.S=1B.S=2C.S=3D.S的值不能确定3.二次函数y=x2+x﹣6的图象与x轴交点的横坐标是()A.2和﹣3B.﹣2和3C.2和3D.﹣2和﹣34.﹣(﹣1)的相反数的倒数是()A.0B.﹣1C.1D.不存在5.若|2x|=﹣2x,则x一定是()A.正数B.负数C.正数或0D.负数或06.若ab<0,则正比例函数y=ax和反比例函数y=在同一坐标系中的大致图象可能是()A.B.C.D.7.圆心角是120°,半径为2的扇形的面积为()A.B.C.2πD.4π8.已知△ABC中,∠A=2∠B=2∠C,则△ABC为()A.锐角三角形B.直角三角形C.钝角三角形D.无法确定9.已知反比例函数的图象如图,则二次函数y=2kx2﹣x+k2的图象大致为()A.B.C.D.10.某人骑自行车从甲地到乙地,到达乙地他马上返回甲地.如图反映的是他离甲地的距离s(km)及他骑车的时间t(h)之间的关系,则下列说法正确的是()A.甲、乙两地之间的距离为60kmB.他从甲地到乙地的平均速度为30km/hC.当他离甲地15km时,他骑车的时间为1hD.若他从乙地返回甲地的平均速度为10km/h,则点A表示的数字为5二、填空题11.点A的坐标是(﹣3,﹣1),那么点A到y轴的距离是.12.若a=,b=,则a、b的大小关系是ab.三、计算题13.(﹣1)÷(﹣1)×7.14.解方程:.15.计算:.四、解答题16.如图,一艘巡逻艇航行至海面B处时,得知正北方向上距B处20海里的C处有一渔船发生故障,就立即指挥港口A处的救援艇前往C处营救.已知C处位于A处的北偏东45°的方向上,港口A位于B的北偏西30°的方向上.求A、C之间的距离.(结果精确到0.1海里,参考数据≈1.41,≈1.73)17.如图,点G在CA的延长线上,AF=AG,∠ADC=∠GEC.求证:AD平分∠BAC.18.如图1,在⊙O中,E是弧AB的中点,C为⊙O上的一动点(C与E在AB异侧),连接EC交AB于点F,EB=r(r是⊙O的半径).(1)D为AB延长线上一点,若DC=DF,证明:直线DC与⊙O相切;(2)如图2,当F是AB的四等分点且EF•EC=时,求EC的值.五、判断题19.判断正误并改正:+=.(判断对错)2015-2016学年湖北省咸宁市九年级(下)月考数学试卷(3月份)参考答案与试题解析一、选择题1.﹣3的倒数为()A.﹣B.C.3D.﹣3【考点】倒数.【专题】存在型.【分析】根据倒数的定义进行解答即可.【解答】解:∵(﹣3)×(﹣)=1,∴﹣3的倒数是﹣.故选A.【点评】本题考查的是倒数的定义,即如果两个数的乘积等于1,那么这两个数互为倒数.2.如图,正比例函数y=kx(k>0)与反比例函数y=的图象相交于A、C两点,过A作x轴的垂线,交x轴于点B,连接BC.若△ABC的面积为S,则()A.S=1B.S=2C.S=3D.S的值不能确定【考点】反比例函数与一次函数的交点问题;三角形的面积.【专题】数形结合.【分析】根据正比例函数y=kx(k>0)与反比例函数y=的图象均关于原点对称,可求出A、C两点坐标的关系,设出两点坐标再根据三角形的面积公式即可解答.【解答】解:∵正比例函数y=kx(k>0)与反比例函数y=的图象均关于原点对称,∴设A点坐标为(x,),则C点坐标为(﹣x,﹣),∴S△AOB=OB•AB=x•=,S△BOC=OB•|﹣|=|﹣x|•|﹣|=,∴S△ABC=S△AOB+S△BOC=+=1.故选A.【点评】本题考查的是反比例函数与正比例函数图象的特点,解答此题的关键是找出A、C两点坐标的关系,设出两点坐标即可.3.二次函数y=x2+x﹣6的图象与x轴交点的横坐标是()A.2和﹣3B.﹣2和3C.2和3D.﹣2和﹣3【考点】抛物线与x轴的交点.【分析】利用二次函数的图象与x轴交点性质.【解答】解:二次函数y=x2+x﹣6的图象与x轴交点的横坐标是当y=0时,一元二次方程x2+x﹣6=0的两个根.解得x1=2,x2=﹣3.故选A.【点评】解答此题要明确:二次函数的图象与x轴交点的横坐标是相应的一元二次方程的两个根.4.﹣(﹣1)的相反数的倒数是()A.0B.﹣1C.1D.不存在【考点】倒数;相反数.【分析】根据只有符号不同的两个数互为相反数,再根据乘积为1的两个数互为倒数,可得答案.【解答】解:﹣(﹣1)的相反数﹣1,﹣1的倒数是﹣1,故选:B.【点评】本题考查了倒数,利用相反数得出:﹣(﹣1)的相反数﹣1是解题关键.5.若|2x|=﹣2x,则x一定是()A.正数B.负数C.正数或0D.负数或0【考点】绝对值.【分析】根据负数或0的绝对值等于它的相反数解答.【解答】解:∵|2x|=﹣2x,∴2x≤0,∴x≤0,即x一定是负数或0.故选D.【点评】本题考查了绝对值的性质,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0,要注意特殊数0.6.若ab<0,则正比例函数y=ax和反比例函数y=在同一坐标系中的大致图象可能是()A.B.C.D.【考点】反比例函数的图象;正比例函数的图象.【分析】根据ab<0及正比例函数与反比例函数图象的特点,可以从a>0,b<0和a<0,b>0两方面分类讨论得出答案.【解答】解:∵ab<0,∴a、b为异号,分两种情况:(1)当a>0,b<0时,正比例函数y=ax数的图象过原点、第一、三象限,反比例函数图象在第二、四象限,无此选项;(2)当a<0,b>0时,正比例函数的图象过原点、第二、四象限,反比例函数图象在第一、三象限,选项C符合.故选C.【点评】本题主要考查了反比例函数的图象性质和正比例函数的图象性质,要掌握它们的性质才能灵活解题.7.圆心角是120°,半径为2的扇形的面积为()A.B.C.2πD.4π【考点】扇形面积的计算.【分析】根据扇形面积公式S=进行计算.【解答】解:∵该扇形的圆心角是120°,半径为2,∴该扇形的面积==.故选B.【点评】本题考查了扇形面积的计算.此题属于基础题,只要掌握扇形面积公式即可.8.已知△ABC中,∠A=2∠B=2∠C,则△ABC为()A.锐角三角形B.直角三角形C.钝角三角形D.无法确定【考点】三角形内角和定理.【分析】根据三角形内角和定理求得∠A、∠B、∠C的度数,由此可以推知△ABC是直角三角形.【解答】解:∵在△ABC中,∠A=2∠B=2∠C,∠A+∠B+∠C=180°,∴∠A=90°,∠B=∠C=45°,∴△ABC是直角三角形.故选B.【点评】本题考查了三角形内角和定理.三角形的内角和是180°.9.已知反比例函数的图象如图,则二次函数y=2kx2﹣x+k2的图象大致为()A.B.C.D.【考点】二次函数的图象;反比例函数的图象.【分析】根据反比例函数图象确定出k<0,然后确定出二次函数的开口方向和对称轴以及二次函数与y轴的交点位置,从而得解.【解答】解:∵反比例函数图象在第二四象限,∴k<0,∴二次函数图象开口向下,抛物线对称轴为直线x=﹣<0,∵k2>0,∴二次函数图象与y轴的正半轴相交.纵观各选项,只有D选项图象符合.故选:D.【点评】本题考查了二次函数图象,反比例函数图象,根据k的取值范围求出二次函数开口方向、对称轴和与y轴的正半轴相交是解题的关键.10.某人骑自行车从甲地到乙地,到达乙地他马上返回甲地.如图反映的是他离甲地的距离s(km)及他骑车的时间t(h)之间的关系,则下列说法正确的是()A.甲、乙两地之间的距离为60kmB.他从甲地到乙地的平均速度为30km/hC.当他离甲地15km时,他骑车的时间为1hD.若他从乙地返回甲地的平均速度为10km/h,则点A表示的数字为5【考点】函数的图象.【分析】根据函数图象的纵坐标,可得甲乙两地的距离,根据甲乙两地的路程除以时间,可得答案.【解答】解:A、由纵坐标看出甲、乙两地之间的距离为30km,故A错误;B、他从甲地到乙地的平均速度为30÷2=15千米/小时,故B错误;C、当他离甲地15km时,他骑车的时间为1h,返回时2.5小时,故C错误;D、若他从乙地返回甲地的平均速度为10km/h,返回时30÷10=3小时,2+3=5,则点A表示的数字为5,故D正确;故选:D.【点评】本题考查了函数图象,观察纵坐标得出路程,观察横坐标得出时间是解题关键.二、填空题11.点A的坐标是(﹣3,﹣1),那么点A到y轴的距离是3.【考点】点的坐标.【专题】数形结合.【分析】根据点的坐标的意义得到点A到y轴的距离为|﹣3|.【解答】解:∵点A的坐标是(﹣3,﹣1),∴点A到y轴的距离为|﹣3|=3.故答案为3.【点评】本题考查了点的坐标:直角坐标系中点与有序实数对一一对应;在x轴上点的纵坐标为0,在y轴上点的横坐标为0;记住各象限点的坐标特点.12.若a=,b=,则a、b的大小关系是a<b.【考点】有理数大小比较.【分析】根据算式的特点,把算式化成分子是1的式子,再进行大小比较即可.【解答】解:∵若a==1﹣b==1﹣,∴a﹣b=1﹣﹣(1﹣)=﹣<0,∴a<b【点评】本题考查了分数的化简,及分数的大小比较.三、计算题13.(﹣1)÷(﹣1)×7.【考点】有理数的除法;有理数的乘法.【分析】将除法变为乘法,再约分计算即可求解.【解答】解:(﹣1)÷(﹣1)×7=(﹣1)×(﹣)×7=4.【点评】此题考查了有理数的乘除法,关键是熟练掌握计算法则正确进行计算.14.解方程:.【考点】解分式方程.【专题】计算题.【分析】本题的最简公分母是3(x+1),方程两边都乘最简公分母,可把分式方程转换为整式方程求解.【解答】解:方程两边都乘3(x+1),得:3x﹣2x=3(x+1),解得:x=﹣,经检验x=﹣是方程的解,∴原方程的解为x=﹣.【点评】当分母是多项式,又能进行因式分解时,应先进行因式分解,再确定最简公分母.分式方程里单独的一个数和字母也必须乘最简公分母.15.计算:.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【专题】计算题.【分析】原式第一项利用零指数幂法则计算,第二项利用绝对值的代数意义化简,第三项利用特殊角的三角函数值计算,最后一项利用负整数指数幂法则计算即可得到结果.【解答】解:原式=1+﹣2×+4=5.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.四、解答题16.如图,一艘巡逻艇航行至海面B处时,得知正北方向上距B处20海里的C处有一渔船发生故障,就立即指挥港口A处的救援艇前往C处营救.已知C处位于A处的北偏东45°的方向上,港口A位于B的北偏西30°的方向上.求A、C之间的距离.(结果精确到0.1海里,参考数据≈1.41,≈1.73)【考点】解直角三角形的应用﹣方向角问题.【专题】应用题;数形结合.【分析】作AD⊥BC,垂足为D,设CD=x,利用解直角三角形的知识,可得出AD,继而可得出BD,结合题意BC=CD+BD=20海里可得出方程,解出x的值后即可得出答案.【解答】解:作AD⊥BC,垂足为D,由题意得,∠ACD=45°,∠ABD=30°,设CD=x,在Rt△ACD中,可得AD=x,在Rt△ABD中,可得BD=x,又∵BC=20,即xx=20,解得:∴AC=x≈10.3(海里).答:A、C之间的距离为10.3海里.【点评】此题考查了解直角三角形的应用,解答本题的关键是根据题意构造直角三角形,将实际问题转化为数学模型进行求解,难度一般.17.如图,点G在CA的延长线上,AF=AG,∠ADC=∠GEC.求证:AD平分∠BAC.【考点】等腰三角形的性质;平行线的性质.【专题】证明题.【分析】根据等腰三角形性质可得∠G=∠GFA;根据平行线的判定方法可得AD∥GF,运用平行线的性质得角的关系求证.【解答
本文标题:咸宁市赤2016届九年级下月考数学试卷(3月)含答案解析
链接地址:https://www.777doc.com/doc-7841054 .html