您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 孝感市汉川市2017届九年级上第三次段测数学试卷含答案解析
2016-2017学年湖北省孝感市汉川市九年级(上)第三次段测数学试卷一、选择题.(每小题只有一个正确答案,每小题3分,共计30分)1.一元二次方程2x2﹣3x+1=0化为(x+a)2=b的形式,正确的是()A.B.C.D.以上都不对2.下列四个图形中,是中心对称图形的是()A.等腰梯形B.正三角形C.D.正五边形3.若函数y=mx2+(m+2)x+m+1的图象与x轴只有一个交点,那么m的值为()A.0B.0或2C.2或﹣2D.0,2或﹣24.如图,⊙O中,直径CD⊥弦AB,则下列结论①△ABD是正△;②∠BOC=2∠ADC;③∠BOC=60°;④AC∥BD,正确的个数有()A.1个B.2个C.3个D.4个5.如图,△ODC是由△OAB绕点O顺时针旋转31°后得到的图形,若点D恰好落在AB上,且∠AOC的度数为100°,则∠DOB的度数是()A.34°B.36°C.38°D.40°6.某种正方形合金板材的成本y(元)与它的面积成正比.设它的边长为x厘米,当x=2时,y=16,那么当成本为72元时,边长为()A.4厘米B.3厘米C.2厘米D.6厘米7.如图,AB是⊙O的弦,AC是⊙O的切线,A为切点,BC经过圆心,∠B=20°,则∠C的度数为()A.70°B.60°C.40°D.50°8.如图用圆心角为120°,半径为6的扇形围成一个圆锥的侧面(接缝忽略不计),则这个圆锥的高是()A.6B.8C.3D.49.如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,x=﹣1是对称轴,有下列判断:①b﹣2a=0;②4a﹣2b+c<0;③a﹣b+c=﹣9a;④若(﹣3,y1),(,y2)是抛物线上两点,则y1>y2,其中正确的是()A.①②③B.①③④C.①②④D.②③④10.如图,在矩形ABCD中,AB=4,AD=5,AD,AB,BC分别与⊙O相切于E,F,G三点,过点D作⊙O的切线BC于点M,切点为N,则DM的长为()A.B.C.D.2二、填空题.(直接写出正确结果,每小题3分,共6题,总计18分)11.方程x2+2kx+k2﹣2k+1=0的两个实数根x1,x2满足x12+x22=4,则k的值为.12.在直角坐标系中,P(a,b)绕原点顺时针旋转90°后的对应点P′的坐标为.13.如图,将一块含30°角的直角三角板和半圆量角器按如图的方式摆放,使斜边与半圆相切.若半径OA=2,则图中阴影部分的面积为.(结果保留π)14.抛物线过点A(﹣1,0),B(0,﹣2),C(1,﹣2),且与x轴的另一交点为E,顶点为D,则四边形ABDE的面积为.15.如图,AB是⊙O的弦,AB=6,点C是⊙O上的一个动点,且∠ACB=45°.若点M,N分别是AB,BC的中点,则MN长的最大值是.16.如图,在正方形ABCD中,AD=1,将△ABD绕点B顺时针旋转45°得到△A′BD′,此时A′D′与CD交于点E,则DE的长度为.三、解答题.(共72分)17.解方程3x2+5x+1=0.18.已知抛物线与x轴交于点(﹣1,0),(2,0),且过点(1,3),求这条抛物线的解析式.19.如图,正方形网格中,每个小正方形边长都是1,在直角坐标系中,△ABC的三个顶点分别为A(2,﹣4),B(4,﹣4),C(1,﹣1).(1)画出△ABC关于y轴对称的△A1B1C1,直接写出A1的坐标.(2)画出△ABC绕点O逆时针旋转90°后的△A2B2C2.20.在⊙O中,直径AB=6,BC是弦,∠ABC=30°,点P在BC上,点Q在⊙O上,且OP⊥PQ.(1)如图1,当PQ∥AB时,求PQ的长度;(2)如图2,当点P在BC上移动时,求PQ长的最大值.21.某校在一块一边筑墙(墙长15m)的空地上修建一矩形花园,如图,花园一边靠墙,另三边用总长为50m的栅栏围成,设BC边长为xm,花园面积为ym2.(1)求y与x之间的函数关系,并写出自变量x的取值范围.(2)结合题意判断,当x取何值时,花园面积最大.22.如图,点P是正方形ABCD内一点,点P到点A、B和D的距离分别为1,2,,△ADP沿点A旋转至△ABP′,连结PP′,并延长AP与BC相交于点Q.(1)求证:△APP′是等腰直角三角形;(2)求∠BPQ的大小;(3)求CQ的长.23.如图,以线段AB为直径作⊙O,CD与⊙O相切于点E,交AB的延长线于点D,连接BE,过点O作OC∥BE交切线DE于点C,连接AC.(1)求证:AC是⊙O的切线;(2)若BD=OB=4,求弦AE的长.24.抛物线y=ax2﹣x﹣2的图象与x轴交于A,B两点,与y轴交于C点,已知点B的坐标为(4,0),(1)求抛物线的解析式.(2)若点M是线段BC下方的抛物线上一点,求△MBC面积的最大值,并求出此时M的坐标.25.如图,在平面直角坐标系中,⊙P经过x轴上一点C,与y轴分别相交于A、B两点,连接AP并延长分别交⊙P、x轴于点D、点E,连接DC并延长交y轴于点F.若点F的坐标为(0,1),点D的坐标为(6,﹣1).(1)求证:DC=FC;(2)判断⊙P与x轴的位置关系,并说明理由;(3)求直线AD的解析式.2016-2017学年湖北省孝感市汉川市九年级(上)第三次段测数学试卷参考答案与试题解析一、选择题.(每小题只有一个正确答案,每小题3分,共计30分)1.一元二次方程2x2﹣3x+1=0化为(x+a)2=b的形式,正确的是()A.B.C.D.以上都不对【考点】解一元二次方程﹣配方法.【分析】先把常数项1移到等号的右边,再把二次项系数化为1,最后在等式的两边同时加上一次项系数一半的平方,然后配方即可.【解答】解:∵2x2﹣3x+1=0,∴2x2﹣3x=﹣1,x2﹣x=﹣,x2﹣x+=﹣+,(x﹣)2=;∴一元二次方程2x2﹣3x+1=0化为(x+a)2=b的形式是:(x﹣)2=;故选C.2.下列四个图形中,是中心对称图形的是()A.等腰梯形B.正三角形C.D.正五边形【考点】中心对称图形.【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形可得答案.【解答】解:A、不是中心对称图形,故此选项错误;B、不是中心对称图形,故此选项错误;C、是中心对称图形,故此选项正确;D、不是中心对称图形,故此选项错误;故选:C.3.若函数y=mx2+(m+2)x+m+1的图象与x轴只有一个交点,那么m的值为()A.0B.0或2C.2或﹣2D.0,2或﹣2【考点】抛物线与x轴的交点.【分析】分为两种情况:函数是二次函数,函数是一次函数,求出即可.【解答】解:分为两种情况:①当函数是二次函数时,∵函数y=mx2+(m+2)x+m+1的图象与x轴只有一个交点,∴△=(m+2)2﹣4m(m+1)=0且m≠0,解得:m=±2,②当函数是一次函数时,m=0,此时函数解析式是y=2x+1,和x轴只有一个交点,故选:D.4.如图,⊙O中,直径CD⊥弦AB,则下列结论①△ABD是正△;②∠BOC=2∠ADC;③∠BOC=60°;④AC∥BD,正确的个数有()A.1个B.2个C.3个D.4个【考点】垂径定理;等边三角形的判定与性质.【分析】由垂径定理和圆周角定理得出①不正确,②正确;③④不正确.【解答】解:∵直径CD⊥AB,∴,CD平分AB,∴∠BDC=∠ADC,AD=BD,∵∠BOC=2∠BDC,∴∠BOC=2∠ADC,①不正确,②正确;没有条件得出∠BOC=60°;AC∥BD,③④不正确;正确的结论有一个,故选:A.5.如图,△ODC是由△OAB绕点O顺时针旋转31°后得到的图形,若点D恰好落在AB上,且∠AOC的度数为100°,则∠DOB的度数是()A.34°B.36°C.38°D.40°【考点】旋转的性质.【分析】根据旋转的性质求出∠AOD和∠BOC的度数,计算出∠DOB的度数.【解答】解:由题意得,∠AOD=31°,∠BOC=31°,又∠AOC=100°,∴∠DOB=100°﹣31°﹣31°=38°.故选:C.6.某种正方形合金板材的成本y(元)与它的面积成正比.设它的边长为x厘米,当x=2时,y=16,那么当成本为72元时,边长为()A.4厘米B.3厘米C.2厘米D.6厘米【考点】二次函数的应用.【分析】设y与x之间的函数关系式为y=kx2,由待定系数法就可以求出解析式,当y=72时代入函数解析式就可以求出结论.【解答】解:设y与x之间的函数关系式为y=kx2,由题意,得16=4k,解得:k=4,∴y=4x2,当y=72时,72=4x2,∴x=3.故选:B.7.如图,AB是⊙O的弦,AC是⊙O的切线,A为切点,BC经过圆心,∠B=20°,则∠C的度数为()A.70°B.60°C.40°D.50°【考点】切线的性质.【分析】连接OA,根据等边对等角求得∠BAO的度数,然后利用三角形的外角的性质求得∠AOC的度数,然后根据切线的性质得到∠OAC=90°,根据直角三角形的性质求解.【解答】解:连接OA.∵OA=OB,∴∠BAO=∠B=20°,∴∠AOC=∠BAO+∠B=40°,∵AC是⊙O的切线,∴OA⊥AC,即∠OAC=90°,∴∠C=90°﹣∠AOC=90°﹣40°=50°.故选D.8.如图用圆心角为120°,半径为6的扇形围成一个圆锥的侧面(接缝忽略不计),则这个圆锥的高是()A.6B.8C.3D.4【考点】圆锥的计算.【分析】设圆锥的底面圆的半径为r,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长和弧长公式得2πr=,解得r=2,然后利用扇形的半径等于圆锥的母线长和勾股定理计算圆锥的高.【解答】解:设圆锥的底面圆的半径为r,根据题意得2πr=,解得r=2,所以圆锥的高==4.故选D.9.如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,x=﹣1是对称轴,有下列判断:①b﹣2a=0;②4a﹣2b+c<0;③a﹣b+c=﹣9a;④若(﹣3,y1),(,y2)是抛物线上两点,则y1>y2,其中正确的是()A.①②③B.①③④C.①②④D.②③④【考点】二次函数图象与系数的关系.【分析】利用二次函数图象的相关知识与函数系数的联系,需要根据图形,逐一判断.【解答】解:∵抛物线的对称轴是直线x=﹣1,∴﹣=﹣1,b=2a,∴b﹣2a=0,故①正确;∵抛物线的对称轴是直线x=﹣1,和x轴的一个交点是(2,0),∴抛物线和x轴的另一个交点是(﹣4,0),∴把x=﹣2代入得:y=4a﹣2b+c>0,故②错误;∵图象过点(2,0),代入抛物线的解析式得:4a+2b+c=0,又∵b=2a,∴c=﹣4a﹣2b=﹣8a,∴a﹣b+c=a﹣2a﹣8a=﹣9a,故③正确;根据图象,可知抛物线对称轴的右边y随x的增大而减小,∵抛物线和x轴的交点坐标是(2,0)和(﹣4,0),抛物线的对称轴是直线x=﹣1,∴点(﹣3,y1)关于对称轴的对称点的坐标是((1,y1),∵(,y2),1<,∴y1>y2,故④正确;即正确的有①③④,故选:B.10.如图,在矩形ABCD中,AB=4,AD=5,AD,AB,BC分别与⊙O相切于E,F,G三点,过点D作⊙O的切线BC于点M,切点为N,则DM的长为()A.B.C.D.2【考点】切线的性质;矩形的性质.【分析】连接OE,OF,ON,OG,在矩形ABCD中,得到∠A=∠B=90°,CD=AB=4,由于AD,AB,BC分别与⊙O相切于E,F,G三点得到∠AEO=∠AFO=∠OFB=∠BGO=90°,推出四边形AFOE,FBGO是正方形,得到AF=BF=AE=BG=2,由勾股定理列方程即可求出结果.【解答】解:连接OE,OF,ON,OG,在矩形ABCD中,∵∠A=∠B=90°,CD=AB=4,∵AD,AB,BC分别与⊙O相切于E,F,G三点,∴∠AEO=∠AFO=∠OFB=∠BGO=90°,∴四边形AFOE,FBGO是正方形,∴AF=BF=AE=BG=2,∴DE=3,∵DM是⊙O的切线,∴DN=DE=3,MN=MG,∴CM=5﹣2﹣MN=3﹣MN,在Rt△DMC中,DM2=CD
本文标题:孝感市汉川市2017届九年级上第三次段测数学试卷含答案解析
链接地址:https://www.777doc.com/doc-7841094 .html