您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 新人教版八年级下《18.2.1矩形》课时练习含答案
新人教版数学八年级下册18.2.1矩形课时练习一.选择题(共15小题)1.一个长方形在平面直角坐标系中三个顶点的坐标为(﹣1,﹣1),(﹣1,2),(3,﹣1),则第四个顶点的坐标为()A.(2,2)B.(3,2)C.(3,3)D.(2,3)答案:B知识点:坐标与图形性质;矩形的性质解析:解答:解:如图可知第四个顶点为:即:(3,2).故选B.分析:本题可在画出图后,根据矩形的性质,得知第四个顶点的横坐标应为3,纵坐标应为2.本题考查学生的动手能力,画出图后可很快得到答案.2.如图,矩形ABCD中,AB=1,AD=2,M是CD的中点,点P在矩形的边上沿A⇒B⇒C⇒M运动,则△APM的面积y与点P经过的路程x之间的函数关系用图象表示大致是下图中的()A.B.C.D.答案:A知识点:函数的图像;分段函数;矩形的性质解析:解答:解:点P由A到B这一段中,三角形的AP边上的高不变,因而面积是路程x的正比例函数,当P到达B点时,面积达到最大,值是1.在P由B到C这一段,面积随着路程的增大而减小;到达C点,即路程是3时,最小是;由C到M这一段,面积越来越小;当P到达M时,面积最小变成0.因而应选第一个选项.故选A.分析:根据每一段函数的性质,确定其解析式,特别注意根据函数的增减性,以及几个最值点,确定选项比较简单.本题考查了分段函数的画法,是难点,要细心认真.3.如图,矩形ABCD中,AB=3,BC=5.过对角线交点O作OE⊥AC交AD于E,则AE的长是()A.1.6B.2.5C.3D.3.4答案:D知识点:线段垂直平分线的性质;勾股定理;矩形的性质解析:解答:解:连接EC,由矩形的性质可得AO=CO,又因EO⊥AC,则由线段的垂直平分线的性质可得EC=AE,设AE=x,则ED=AD﹣AE=5﹣x,在Rt△EDC中,根据勾股定理可得EC2=DE2+DC2,即x2=(5﹣x)2+32,解得x=3.4.故选D.分析:利用线段的垂直平分线的性质,得到EC与AE的关系,再由勾股定理计算出AE的长.本题考查了利用线段的垂直平分线的性质.矩形的性质及勾股定理综合解答问题的能力,在解上面关于x的方程时有时出现错误,而误选其它选项.4.一次数学课上,老师请同学们在一张长为18厘米,宽为16厘米的矩形纸板上,剪下一个腰长为10厘米的等腰三角形,且要求等腰三角形的一个顶点与矩形的一个顶点重合,其它两个顶点在矩形的边上,则剪下的等腰三角形的面积为多少平方厘米()A.50B.50或40C.50或40或30D.50或30或20答案:C知识点:等腰三角形的性质;勾股定理;矩形的性质解析:解答:解:如图四边形ABCD是矩形,AD=18cm,AB=16cm;本题可分三种情况:①如图(1):△AEF中,AE=AF=10cm;S△AEF=•AE•AF=50cm2;②如图(2):△AGH中,AG=GH=10cm;在Rt△BGH中,BG=AB﹣AG=16﹣10=6cm;根据勾股定理有:BH=8cm;∴S△AGH=AG•BH=×8×10=40cm2;③如图(3):△AMN中,AM=MN=10cm;在Rt△DMN中,MD=AD﹣AM=18﹣10=8cm;根据勾股定理有DN=6cm;∴S△AMN=AM•DN=×10×6=30cm2.故选C.分析:本题中由于等腰三角形的位置不确定,因此要分三种情况进行讨论求解,①如图(1),②如图(2),③如图(3),分别求得三角形的面积.题主要考查了等腰三角形的性质.矩形的性质.勾股定理等知识,解题的关键在于能够进行正确的讨论.5.菱形具有而矩形不具有性质是()A.对角线相等B.对角线互相平分C.对角线互相垂直D.对角线平分且相等答案:C知识点:菱形的性质;矩形的性质解析:解答:解:A.菱形的对角线不一定相等,矩形的对角线一定相等,故本选项错误;B.菱形和矩形的对角线均互相平分,故本选项错误;C.菱形的对角线互相垂直,而矩形的对角线不一定互相垂直(互相垂直时是正方形),故本选项正确;D.菱形和矩形的对角线均互相平分且相等,故本选项错误.故选C.分析:由于菱形的对角线互相垂直平分,矩形的对角线互相平分且相等,据此进行比较从而得到答案.本题考查矩形与菱形的性质的区别:矩形的对角线互相平分且相等,菱形的对角线互相平分.垂直且平分每一组对角.6.在矩形ABCD中,AB=1,AD=3,AF平分∠DAB,过C点作CE⊥BD于E,延长AF.EC交于点H,下列结论中:①AF=FH;②BO=BF;③CA=CH;④BE=3ED.正确的是()A.②③B.③④C.①②④D.②③④答案:D知识点:矩形的性质;角平分线的性质;等腰三角形的性质;等边三角形的性质。解析:解答:解:∵AB=1,AD=3,∴BD=AC=2,OB=OA=OD=OC=1.∴△OAB,△OCD为正三角形.AF平分∠DAB,∴∠FAB=45°,即△ABF是一个等腰直角三角形.∴BF=AB=1,BF=BO=1.∵AF平分∠DAB,∴∠FAB=45°,∴∠CAH=45°﹣30°=15°.∵∠ACE=30°(正三角形上的高的性质)∴∠AHC=15°,∴CA=CH由正三角形上的高的性质可知:DE=OD÷2,OD=OB,∴BE=3ED.故选D.分析:这是一个特殊的矩形:对角线相交成60°的角.利用等边三角形的性质结合图中的特殊角度解答.本题主要考查了矩形的性质及正三角形的性质.7.如图,矩形ABCD的两条对角线相交于点O,∠AOB=60°,AB=2,则矩形的对角线AC的长是()A.2B.4C.2D.4答案:B知识点:矩形的性质;等边三角形的判定与性质解析:解答:解:因为在矩形ABCD中,所以AO=AC=BD=BO,又因为∠AOB=60°,所以△AOB是等边三角形,所以AO=AB=2,所以AC=2AO=4.故选B.分析:本题的关键是利用等边三角形和矩形对角线的性质求长度.本题难度中等,考查矩形的性质.8.已知AC为矩形ABCD的对角线,则图中∠1与∠2一定不相等的是()A.B.C.D.答案:D知识点:矩形的性质;三角形的外角性质解析:解答:解:A项的对顶角相等;B,C项不确定;D项一定不相等,因为∠1=∠ACD,∠2>∠ACD.故选D.分析:根据矩形的性质,利用排除法可求解.本题主要是利用三角形的外角>和它不相邻的任一内角可知,∠1与∠2一定不相等.9.如图,矩形ABCD的周长为20cm,两条对角线相交于O点,过点O作AC的垂线EF,分别交AD,BC于E,F点,连接CE,则△CDE的周长为()A.5cmB.8cmC.9cmD.10cm答案:D知识点:矩形的性质;线段垂直平分线的性质解析:解答:解:∵ABCD为矩形,∴AO=OC.∵EF⊥AC,∴AE=EC.∴△CDE的周长=CD+DE+EC=CD+DE+AE=CD+AD=10(cm)故选D.分析:∵△CDE的周长=CD+DE+EC,又EC=AE,∴周长=CD+AD.本题的关键是利用线段垂直平分线的性质求出AE=CE,进而求三角形的周长.10.如图,在矩形ABCD中,E为CD的中点,连接AE并延长交BC的延长线于点F,则图中全等的直角三角形共有()A.6对B.5对C.4对D.3对答案:C知识点:矩形的性质;直角三角形全等的判定解析:解答:解:图中全等的直角三角形有:△AED≌△FEC,△BDC≌△FDC≌△DBA,共4对.故选C.分析:先找出图中的直角三角形,再分析三角形全等的方法,然后判断它们之间是否全等.本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.11.如图,将矩形ABCD沿AE折叠,若∠BAD′=30°,则∠AED′等于()A.30°B.45°C.60°D.75°答案:C知识点:矩形的性质;翻折变换(折叠问题)解析:解答:解:根据题意得:∠DAE=∠EAD′,∠D=∠D′=90°.∵∠BAD′=30°,∴∠EAD′=(90°﹣30°)=30°.∴∠AED′=90°﹣30°=60°.故选C.分析:根据折叠的性质求∠EAD′,再在Rt△EAD′中求∠AED′.已知图形的折叠,就是已知图形全等,就可以得到一些相等的角.12.矩形ABCD中的顶点A.B.C.D按顺时针方向排列,若在平面直角坐标系内,B.D两点对应的坐标分别是(2,0).(0,0),且A.C两点关于x轴对称,则C点对应的坐标是()A.(1,1)B.(1,﹣1)C.(1,﹣2)D.(,﹣)答案:B知识点:矩形的性质;关于x轴、y轴对称的点的坐标解析:解答:解:已知B,D两点的坐标分别是(2,0).(0,0),则可知A,C两点的横坐标一定是1,且关于x轴对称,则A,C两点纵坐标互为相反数,设A点坐标为:(1,b),则有:,解得b=1,所以点A坐标为(1,1)点C坐标为(1,﹣1).故选B.分析:根据关于x轴对称,横坐标不变,纵坐标互为相反数和平行四边形的性质,确定C点对应的坐标.此题考查知识点比较多,要注意各个知识点之间的联系,并能灵活应用.13.如图,在矩形ABCD中,EF∥AB,GH∥BC,EF.GH的交点P在BD上,图中面积相等的四边形有()A.3对B.4对C.5对D.6对答案:C知识点:矩形的性质;全等三角形的判定解析:解答:解:在矩形ABCD中,∵EF∥AB,AB∥DC,∴EF∥DC,则EP∥DH;故∠PED=∠DHP;同理∠DPH=∠PDE;又PD=DP;所以△EPD≌△HDP;则S△EPD=S△HDP;同理,S△GBP=S△FPB;则(1)S梯形BPHC=S△BDC﹣S△HDP=S△ABD﹣S△EDP=S梯形ABPE;(2)S□AGPE=S梯形ABPE﹣S△GBP=S梯形BPHC﹣S△FPB=S□FPHC;(3)S梯形FPDC=S□FPHC+S△HDP=S□AGPE+S△EDP=S梯形GPDA;(4)S□AGHD=S□AGPE+S□HDPE=S□PFCH+S□PHDE=S□EFCD;(5)S□ABFE=S□AGPE+S□GBFP=S□PFCH+S□GBFP=S□GBCH故选C.分析:本题考查了矩形的性质,得出△EPD≌△HDP,则S△EPD=S△HDP,通过对各图形的拼凑,得到的结论.本题是一道结论开放题,掌握矩形的性质,很容易得到答案.14.将矩形ABCD沿AE折叠,得到如图所示的图形,已知∠CED′=60°,则∠AED的大小是()A.60°B.50°C.75°D.55°答案:A知识点:矩形的性质;翻折变换(折叠问题)解析:解答:解:∵∠AED′是△AED沿AE折叠而得,∴∠AED′=∠AED.又∵∠DEC=180°,即∠AED′+∠AED+∠CED′=180°,又∠CED′=60°,∴∠AED==60°.故选A.分析:根据折叠前后对应部分相等得∠AED′=∠AED,再由已知求解.图形的折叠实际上相当于把折叠部分沿着折痕所在直线作轴对称,所以折叠前后的两个图形是全等三角形,重合的部分就是对应量.15.如图,在宽为20m,长为30m的矩形地面上修建两条同样宽的道路,余下部分作为耕地.根据图中数据,计算耕地的面积为()A.600m2B.551m2C.550m2D.500m2答案:B知识点:矩形的性质解析:解答:解:30×20﹣30×1﹣20×1+1×1=600﹣30﹣20+1=551(平方米)答:耕地的面积为551平方米.故选B.分析:要计算耕地的面积,只要求出小路的面积,再用矩形的面积减去小路的面积即可.解答此题的关键是正确求出小路的面积,要注意两条小路重合的面积最后要加上.二.填空题(共5小题)1.如图,把一个矩形纸片OABC放入平面直角坐标系中,使OA、OC分别落在x轴、y轴上,连接OB,将纸片OABC沿OB折叠,使点A落在A′的位置上.若OB=,21=OCBC,求点A′的坐标为.答案:53,54知识点:坐标与图形性质;矩形的性质;翻折变换(折叠问题)解析:解答:解:∵OB=5,21=OCBC∴BC=1,O
本文标题:新人教版八年级下《18.2.1矩形》课时练习含答案
链接地址:https://www.777doc.com/doc-7841144 .html