您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 玉林市博白县2016-2017学年八年级上期中数学试卷含答案解析
广西玉林市博白县2016-2017学年八年级(上)期中数学试卷(解析版)一、选择题(共12小题,每小题3分,满分36分)1.三角形的内角和等于()A.90°B.180°C.300°D.360°2.下列图形中,是轴对称图形的是()A.B.C.D.3.若一个三角形的两边长分别为3和6,则第三边长可能是()A.6B.3C.2D.104.下列图形中具有稳定性的是()A.正三角形B.正方形C.正五边形D.正六边形5.若△ABC中,∠A:∠B:∠C=1:2:3,则△ABC一定是()A.锐角三角形B.钝角三角形C.直角三角形D.任意三角形6.在Rt△ABC中,∠C=90°,∠B=30°,斜边AB的长为2,则AC长为()A.4B.2C.1D.7.下列说法正确的是()A.形状相同的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等8.用直尺和圆规作已知角的平分线的示意图如右,则说明∠CAD=∠DAB的依据是()A.SSSB.SASC.ASAD.AAS9.根据下列已知条件,能唯一画出△ABC的是()A.AB=3,BC=4,AC=8B.∠C=90°,AB=6C.∠A=60°,∠B=45°,AB=4D.AB=3,BC=3,∠A=30°10.如图,在等腰三角形纸片ABC中,AB=AC,∠A=40°,折叠该纸片,使点A落在点B处,折痕为DE,则∠CBE的度数是()A.20°B.30°C.40°D.70°11.如图,在△ABC中,AB=AC,∠A=30°,E为BC延长线上一点,∠ABC与∠ACE的平分线相交于点D,则∠D的度数为()A.15°B.17.5°C.20°D.22.5°12.如图,等腰三角形ABC中,AB=AC,D、E都在BC上,要使△ABD≌△ACE,需要添加一个条件,某学习小组在讨论这个条件时给出了如下几种方案:①AD=AE;②BD=CE;③BE=CD;④∠BAD=∠CAE,其中可行的有()A.1种B.2种C.3种D.4种二、填空题(共6小题,每小题3分,满分18分)13.点P(﹣2,3)关于y轴对称的点的坐标是.14.等腰三角形的一个内角为100°,则它的底角为.15.若一个多边形外角和与内角和相等,则这个多边形是边形.16.如图,已知AB=AD,∠BAE=∠DAC,要使△ABC≌△ADE,若以“SAS”为依据,补充的条件是.17.如图,在△ABC中,∠C=90°,AD平分∠BAC,BC=12cm,BD=9cm,则点D到AB的距离是cm.18.如图,在△ABC中,∠ACB=90°,∠ABC=60°,BD平分∠ABC,P点是BD的中点,若AD=8,则CP的长为.三、解答题(共8小题,满分66分)19.(6分)一个多边形的内角和是它的外角和的4倍,求这个多边形的边数.20.(6分)已知:如图,AB=AC,DB=DC,求证:∠B=∠C.21.(7分)如图,△ABC与△ADE关于直线MN对称,BC与DE的交点F在直线MN上.(1)图中点B的对称点是,点C的对称点是;(2)写出图中相等的一对线段是,相等的一对角是;(3)写出图中全等的一对三角形是.22.(7分)如图,在△ABC中,∠B=40°,∠C=70°,AD是△BAC的角平分线,求∠ADC的度数.23.(8分)已知:如图,CE⊥AB,BF⊥AC,CE与BF相交于D,且BD=CD.求证:D在∠BAC的平分线上.24.(10分)如图,已知AB=CD,∠B=∠C,AC和BD相交于点O,E是AD的中点,连接OE.(1)求证:△AOB≌△DOC;(2)求∠AEO的度数.25.(10分)如图,在△ABC中,AB=AC,∠BAC=120°,AE=BE,D为EC中点.(1)求∠CAE的度数;(2)求证:△ADE是等边三角形.26.(12分)以点A为顶点作等腰Rt△ABC,等腰Rt△ADE,其中∠BAC=∠DAE=90°,如图1所示放置,使得一直角边重合,连接BD、CE.(1)试判断BD、CE的数量关系,并说明理由;(2)延长BD交CE于点F,试求∠BFC的度数;(3)把两个等腰直角三角形按如图2放置,(1)中的结论是否仍成立?请说明理由.2016-2017学年广西玉林市博白县八年级(上)期中数学试卷参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.三角形的内角和等于()A.90°B.180°C.300°D.360°【考点】三角形内角和定理.【分析】利用三角形的内角和定理:三角形的内角和为180°即可解本题【解答】解:因为三角形的内角和为180度.所以B正确.故选B.【点评】此题主要考查了三角形的内角和定理:三角形的内角和为180°.2.下列图形中,是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、是轴对称图形,故本选项正确;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选A.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.若一个三角形的两边长分别为3和6,则第三边长可能是()A.6B.3C.2D.10【考点】三角形三边关系.【分析】根据三角形三边关系,两边之和第三边,两边之差小于第三边即可判断.【解答】解:设第三边为x,则3<x<9,所以符合条件的整数为6,故选A.【点评】本题考查三角形三边关系定理,记住两边之和第三边,两边之差小于第三边,属于基础题,中考常考题型.4.下列图形中具有稳定性的是()A.正三角形B.正方形C.正五边形D.正六边形【考点】三角形的稳定性.【分析】直接根据三角形具有稳定性进行解答即可.【解答】解:∵三角形具有稳定性,∴A正确,B、C、D错误.故选A.【点评】本题考查的是三角形的稳定性,熟知三角形三边的长度确定后,三角形的形状和大小就能唯一确定下来,故三角形具有稳定性是解答此题的关键.5.若△ABC中,∠A:∠B:∠C=1:2:3,则△ABC一定是()A.锐角三角形B.钝角三角形C.直角三角形D.任意三角形【考点】三角形内角和定理.【分析】设∠A=x°,∠B=2x°,∠C=3x°,根据∠A+∠B+∠C=180°得出方程x+2x+3x=180,求出x即可.【解答】解:∵△ABC中,∠A:∠B:∠C=1:2:3,∴设∠A=x°,∠B=2x°,∠C=3x°,∵∠A+∠B+∠C=180,∴x+2x+3x=180°,∴x=30,∴∠C=90°,∠A=30°,∠B=60°,即△ABC是直角三角形,故选C.【点评】本题考查了三角形内角和定理的应用,能根据题意得出方程是解此题的关键,注意:三角形的内角和等于180°.6.在Rt△ABC中,∠C=90°,∠B=30°,斜边AB的长为2,则AC长为()A.4B.2C.1D.【考点】含30度角的直角三角形.【分析】根据直角三角形30°角所对的直角边等于斜边的一半得出AC=AB=1.【解答】解:∵在Rt△ABC中,∠C=90°,∠B=30°,斜边AB的长为2,∴AC=AB=1.故选C.【点评】本题主要考查含30°角的直角三角形的性质,掌握在直角三角形中30°锐角所对的直角边等于斜边的一半是解题的关键.7.下列说法正确的是()A.形状相同的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等【考点】全等图形.【分析】根据全等形的概念:能够完全重合的两个图形叫做全等形,以及全等三角形的判定定理可得答案.【解答】解:A、形状相同的两个三角形全等,说法错误,应该是形状相同且大小也相同的两个三角形全等;B、面积相等的两个三角形全等,说法错误;C、完全重合的两个三角形全等,说法正确;D、所有的等边三角形全等,说法错误;故选:C.【点评】此题主要考查了全等图形,关键是掌握全等形的概念.8.用直尺和圆规作已知角的平分线的示意图如右,则说明∠CAD=∠DAB的依据是()A.SSSB.SASC.ASAD.AAS【考点】全等三角形的判定;作图—基本作图.【分析】利用三角形全等的判定证明.【解答】解:从角平分线的作法得出,△AFD与△AED的三边全部相等,则△AFD≌△AED.故选A.【点评】考查了三边对应相等的两个三角形全等(SSS)这一判定定理.9.根据下列已知条件,能唯一画出△ABC的是()A.AB=3,BC=4,AC=8B.∠C=90°,AB=6C.∠A=60°,∠B=45°,AB=4D.AB=3,BC=3,∠A=30°【考点】全等三角形的判定.【分析】根据三角形的三边关系定理,先看看能否组成三角形,再根据全等三角形的判定定理判断即可.【解答】解:A、∵3+4<8,∴根据AB=3,BC=4,AB=8不能画出三角形,故本选项错误;B、根据∠C=90°,AB=6不能画出唯一三角形,故本选项错误;C、根据∠A=60°,∠B=45°,AB=4,符合全等三角形的判定定理ASA,即能画出唯一三角形,故本选项正确;D、根据AB=3,BC=3,∠A=30°不能画出唯一三角形,故本选项错误;故选C【点评】本题考查了三角形的三边关系定理和全等三角形的判定定理,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.10.如图,在等腰三角形纸片ABC中,AB=AC,∠A=40°,折叠该纸片,使点A落在点B处,折痕为DE,则∠CBE的度数是()A.20°B.30°C.40°D.70°【考点】翻折变换(折叠问题);等腰三角形的性质.【分析】如图,证明∠A=∠ABE=40°;证明∠ABC=∠C=70°,即可解决问题.【解答】解:如图,由题意得:△ADE≌△BDE,∴∠A=∠ABE=40°;∵AB=AC,∴∠ABC=∠C==70°,∴∠CBE=30°,故选B.【点评】该题主要考查了翻折变换的性质、等腰三角形的性质、三角形的内角和定理及其应用问题;解题的关键是牢固掌握翻折变换的性质、等腰三角形的性质、三角形的内角和定理等知识点.11.如图,在△ABC中,AB=AC,∠A=30°,E为BC延长线上一点,∠ABC与∠ACE的平分线相交于点D,则∠D的度数为()A.15°B.17.5°C.20°D.22.5°【考点】等腰三角形的性质.【分析】先根据角平分线的定义得到∠1=∠2,∠3=∠4,再根据三角形外角性质得∠1+∠2=∠3+∠4+∠A,∠1=∠3+∠D,则2∠1=2∠3+∠A,利用等式的性质得到∠D=∠A,然后把∠A的度数代入计算即可.【解答】解:∵∠ABC的平分线与∠ACE的平分线交于点D,∴∠1=∠2,∠3=∠4,∵∠ACE=∠A+∠ABC,即∠1+∠2=∠3+∠4+∠A,∴2∠1=2∠3+∠A,∵∠1=∠3+∠D,∴∠D=∠A=×30°=15°.故选A.【点评】本题考查了三角形内角和定理,关键是根据三角形内角和是180°和三角形外角性质进行分析.12.如图,等腰三角形ABC中,AB=AC,D、E都在BC上,要使△ABD≌△ACE,需要添加一个条件,某学习小组在讨论这个条件时给出了如下几种方案:①AD=AE;②BD=CE;③BE=CD;④∠BAD=∠CAE,其中可行的有()A.1种B.2种C.3种D.4种【考点】全等三角形的判定.【分析】根据全等三角形的判定定理SAS,ASA,AAS,SSS,对每一个选项进行判断即可.【解答】解:∵在△ABC中,AB=AC,∴∠B=∠C,当①AD=AE时,∴∠ADE=∠AED,∵∠ADE=∠B+∠BAD,∠AED=∠C+∠CAE,∴∠BAD=∠CAE,然后根据SAS或ASA或AAS可判定△ABD≌△ACE;当②BD=CE时,根据SAS可判定△ABD≌△ACE;当③BE=CD时,∴BE﹣DE=CD﹣DE,即BD=CE,根据SAS可判定△ABD≌△ACE;当④∠BAD=∠CAE时,根据ASA可判定△ABD≌△ACE.综上所述①②③④均可判定△ABD≌△ACE.故选D.【点评】本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,题目比较
本文标题:玉林市博白县2016-2017学年八年级上期中数学试卷含答案解析
链接地址:https://www.777doc.com/doc-7841319 .html