您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 周口市周口港区2015-2016年八年级下期末数学试卷含答案解析
2015-2016学年河南省周口市周口港区八年级(下)期末数学试卷一、选择题下列各小题均有四个答案,其中只有一个是正确的.将正确答案的代号字母填在括号内.1.若代数式+有意义,则实数x的取值范围是()A.x≠1B.x≥0C.x≠0D.x≥0且x≠12.下列各式计算正确的是()A.+=B.4﹣3=1C.2×3=6D.÷=33.在一次函数y=ax﹣a中,y随x的增大而减小,则其图象可能是()A.B.C.D.4.如图,在Rt△ABC中,∠BAC=90°,∠ABC的平分线BD交AC于点D,DE是BC的垂直平分线,点E是垂足.已知AD=2,则图中长为2的线段有()A.1条B.2条C.3条D.4条5.下列结论正确的是()A.3a2b﹣a2b=2B.单项式﹣x2的系数是﹣1C.使式子有意义的x的取值范围是x>﹣1D.若分式的值等于0,则a=±16.如图,在Rt△ABC中,∠ACB=90°,CD为AB边上的高,若点A关于CD所在直线的对称点E恰好为AB的中点,则∠B的度数是()A.60°B.45°C.30°D.75°7.将五个边长都为2cm的正方形按如图所示摆放,点A、B、C、D分别是四个正方形的中心,则图中四块阴影面积的和是()cm2.A.2cm2B.4cm2C.6cm2D.8cm28.如图,点A,B为定点,定直线l∥AB,P是l上一动点,点M,N分别为PA,PB的中点,对下列各值:①线段MN的长;②△PAB的周长;③△PMN的面积;④直线MN,AB之间的距离;⑤∠APB的大小.其中会随点P的移动而变化的是()A.②③B.②⑤C.①③④D.④⑤二、填空题(毎小題3分,共21分,把答案写在题中撗线上)9.2﹣6+的结果是.10.如图,四边形ABCD是菱形,对角线AC=8cm,DB=6cm,DH⊥AB于点H,则DH的长为.11.一次函数y=kx+b(k≠0)的图象经过A(1,0)和B(0,2)两点,则它的图象不经过第象限.12.如图,点D、E、F分别是△ABC各边的中点,连接DE、EF、DF.若△ABC的周长为10,则△DEF的周长为.13.某大学自主招生考试只考数学和物理.计算综合得分时,按数学占60%,物理占40%计算.已知孔明数学得分为95分,综合得分为93分,那么孔明物理得分是分.14.如图一副直角三角板放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,AC=5,CD的长.15.如图,四边形ABCD中,∠A=90°,AB=3,AD=3,点M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为.三、解答题(本大题共8个小題,共75分.解答应写出文宇说明,证明过程或演算步骤)16.计算:(1)÷﹣×+;(2)(+1)(﹣1)+﹣()0.17.如图,四边形ABCD中,对角线AC、BD相交于点O,AO=CO,BO=DO,且∠ABC+∠ADC=180°.(1)求证:四边形ABCD是矩形.(2)DF⊥AC,若∠ADF:∠FDC=3:2,则∠BDF的度数是多少?18.某中学开展“唱红歌”比赛活动,九年级(1)、(2)班根据初赛成绩,各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩如图所示.(1)根据图示填写下表;班级平均数(分)中位数(分)众数(分)九(1)85九(2)85100(2)结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩较好;(3)计算两班复赛成绩的方差.19.如图,有两条公路OM,ON相交成30°角.沿公路OM方向离O点80米处有一所学校A,当重型运输卡车P沿道路ON方向行驶时,在以P为圆心50米长为半径的圆形区域内都会受到卡车噪声的影响,且卡车P与学校A的距离越近噪声影响越大.若已知重型运输卡车P沿道路ON方向行驶的速度为18千米/时.(1)求对学校A的噪声影响最大时卡车P与学校A的距离;(2)求卡车P沿道路ON方向行驶一次给学校A带来噪声影响的时间.20.在四边形ABCD中,AB=AD=8,∠A=60°,∠D=150°,四边形周长为32,求BC和CD的长度.21.为了贯彻落实市委市府提出的“精准扶贫”精神.某校特制定了一系列关于帮扶A、B两贫困村的计划.现决定从某地运送152箱鱼苗到A、B两村养殖,若用大小货车共15辆,则恰好能一次性运完这批鱼苗,已知这两种大小货车的载货能力分别为12箱/辆和8箱/辆,其运往A、B两村的运费如下表:目的地车型A村(元/辆)B村(元/辆)大货车800900小货车400600(1)求这15辆车中大小货车各多少辆?(2)现安排其中10辆货车前往A村,其余货车前往B村,设前往A村的大货车为x辆,前往A、B两村总费用为y元,试求出y与x的函数解析式.(3)在(2)的条件下,若运往A村的鱼苗不少于100箱,请你写出使总费用最少的货车调配方案,并求出最少费用.22.甲、乙两车分别从相距480km的A、B两地相向而行,乙车比甲车先出发1小时,并以各自的速度匀速行驶,途经C地,甲车到达C地停留1小时,因有事按原路原速返回A地.乙车从B地直达A地,两车同时到达A地.甲、乙两车距各自出发地的路程y(千米)与甲车出发所用的时间x(小时)的关系如图,结合图象信息解答下列问题:(1)乙车的速度是千米/时,t=小时;(2)求甲车距它出发地的路程y与它出发的时间x的函数关系式,并写出自变量的取值范围;(3)直接写出乙车出发多长时间两车相距120千米.23.已知:△ABC是等腰直角三角形,动点P在斜边AB所在的直线上,以PC为直角边作等腰直角三角形PCQ,其中∠PCQ=90°,探究并解决下列问题:(1)如图①,若点P在线段AB上,且AC=1+,PA=,则:①线段PB=,PC=;②猜想:PA2,PB2,PQ2三者之间的数量关系为;(2)如图②,若点P在AB的延长线上,在(1)中所猜想的结论仍然成立,请你利用图②给出证明过程;(3)若动点P满足=,求的值.(提示:请利用备用图进行探求)2015-2016学年河南省周口市周口港区八年级(下)期末数学试卷参考答案与试题解析一、选择题下列各小题均有四个答案,其中只有一个是正确的.将正确答案的代号字母填在括号内.1.若代数式+有意义,则实数x的取值范围是()A.x≠1B.x≥0C.x≠0D.x≥0且x≠1【考点】二次根式有意义的条件;分式有意义的条件.【分析】先根据分式及二次根式有意义的条件列出关于x的不等式组,求出x的取值范围即可.【解答】解:∵代数式+有意义,∴,解得x≥0且x≠1.故选D.【点评】本题考查的是二次根式及分式有意义的条件,熟知二次根式具有非负性是解答此题的关键.2.下列各式计算正确的是()A.+=B.4﹣3=1C.2×3=6D.÷=3【考点】二次根式的混合运算.【专题】探究型.【分析】计算出各个选项中式子的正确结果,即可得到哪个选项是正确的.【解答】解:∵+不能合并,故选项A错误;∵4﹣3=4﹣6,故选项B错误;∵2×3=18,故选项C错误;∵÷=3,故选项D正确;故选D.【点评】本题考查二次根式的混合运算,解题的关键是明确二次根式的混合运算的计算方法.3.在一次函数y=ax﹣a中,y随x的增大而减小,则其图象可能是()A.B.C.D.【考点】一次函数的图象.【分析】根据y=kx+b,k<0时,y随x的增大而减小,可得答案.【解答】解:由y=ax﹣a中,y随x的增大而减小,得a<0,﹣a>0,故B正确.故选:B.【点评】本题考查了一次函数图象,利用一次函数的性质是解题关键.4.如图,在Rt△ABC中,∠BAC=90°,∠ABC的平分线BD交AC于点D,DE是BC的垂直平分线,点E是垂足.已知AD=2,则图中长为2的线段有()A.1条B.2条C.3条D.4条【考点】线段垂直平分线的性质;正弦定理与余弦定理;角平分线的性质.【分析】由角平分线的性质可得AD=DE,∠ABD=∠DBE,由垂直平分线性质可得BD=DC,∠DBE=∠DCE,已知AD,则结合这些信息可以求得AB,BE,CE的长.【解答】解:∵DE是BC的垂直平分线,∴BD=DC,BE=EC,∠DBE=∠DCE,DE⊥BC,∵∠ABC的平分线BD交AC于点D,∴∠ABD=∠DBE,∵AD⊥AB,DE⊥BE,∴DE=AD=2,∵∠BAC=90°,∴∠DBE=∠DCE=∠ABD=30°,∴AB=AD•tan30°=2.在Rt△ABD和Rt△EBD中,∴△ABD≌△EBD(AAS),即AB=BE,∴AB=BE=EC=2.即图中长为2的线段有3条.故选:C.【点评】此题主要考查了角平分线的性质以及全等三角形的判定与性质,正确得出BE=AB是解题关键.5.下列结论正确的是()A.3a2b﹣a2b=2B.单项式﹣x2的系数是﹣1C.使式子有意义的x的取值范围是x>﹣1D.若分式的值等于0,则a=±1【考点】分式的值为零的条件;合并同类项;单项式;分式有意义的条件.【分析】根据合并同类项的法则、单项式的定义、分式有意义的条件和分式的值为零的条件进行计算.【解答】解:A、原式=2a2b,故本选项错误;B、﹣x2是单项式,且系数是﹣1,故本选项正确;C、使式子有意义的x的取值范围是a≠﹣1,故本选项错误;D、若分式的值等于0,则a=±1且a+1≠0,即a=1,故本选项错误;故选:B.【点评】本题考查了分式有意义的条件,分式的值是零的条件,合并同类项以及单项式的定义.属于基础题,难度不大.6.如图,在Rt△ABC中,∠ACB=90°,CD为AB边上的高,若点A关于CD所在直线的对称点E恰好为AB的中点,则∠B的度数是()A.60°B.45°C.30°D.75°【考点】直角三角形斜边上的中线;轴对称的性质.【分析】根据轴对称的性质可知∠CED=∠A,根据直角三角形斜边上的中线的性质、等腰三角形的性质可得∠ECA=∠A,∠B=∠BCE,根据等边三角形的判定和性质可得∠CED=60°,再根据三角形外角的性质可得∠B的度数,从而求得答案.【解答】解:∵在Rt△ABC中,∠ACB=90°,CD为AB边上的高,点A关于CD所在直线的对称点E恰好为AB的中点,∴∠CED=∠A,CE=BE=AE,∴∠ECA=∠A,∠B=∠BCE,∴△ACE是等边三角形,∴∠CED=60°,∴∠B=∠CED=30°.故选:C.【点评】本题考查轴对称的性质,直角三角形斜边上的中线的性质、等腰三角形的性质,等边三角形的判定和性质,三角形外角的性质,关键是得到∠CED=60°.7.将五个边长都为2cm的正方形按如图所示摆放,点A、B、C、D分别是四个正方形的中心,则图中四块阴影面积的和是()cm2.A.2cm2B.4cm2C.6cm2D.8cm2【考点】正方形的性质.【分析】由图形的特点可知,每个阴影部分的面积都等于正方形面积的,据此解题.【解答】解:由正方形的性质可知,每个阴影部分的面积都等于正方形面积的,故图中四块阴影部分的面积和为一个正方形的面积,即22=4cm2.故选:B.【点评】本题主要考查了正方形的特性及面积公式,解答本题的关键是发现每个阴影部分的面积都等于正方形面积的.8.如图,点A,B为定点,定直线l∥AB,P是l上一动点,点M,N分别为PA,PB的中点,对下列各值:①线段MN的长;②△PAB的周长;③△PMN的面积;④直线MN,AB之间的距离;⑤∠APB的大小.其中会随点P的移动而变化的是()A.②③B.②⑤C.①③④D.④⑤【考点】三角形中位线定理;平行线之间的距离.【专题】压轴题.【分析】根据三角形的中位线平行于第三边并且等于第三边的一半可得MN=AB,从而判断出①不变;再根据三角形的周长的定义判断出②是变化的;确定出点P到MN的距离不变,然后根据等底等高的三角形的面积相等确定出③不变;根据平行线间的距离相等判断出④不变;根据角的定义判断出⑤变化.【解答】解:∵点A,B为定点,点M,N分别为PA,PB的中点,∴MN是△PAB的中位线,∴MN=AB,即线段MN的长度不变,故①错误;PA、PB的长度随点P的移动而变化,所以,△PAB的周长会随点P的移动而
本文标题:周口市周口港区2015-2016年八年级下期末数学试卷含答案解析
链接地址:https://www.777doc.com/doc-7841671 .html