您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 成武县2015~2016学年度八年级上期中数学试卷含答案解析
山东省菏泽市成武县2015~2016学年度八年级上学期期中数学试卷一、选择题:请将答案填在下面的答题栏中,每小题3分,共30分.1.在下列图案中,是轴对称图形的有()A.1个B.2个C.3个D.4个2.用直尺和圆规作一个角等于已知角,如图,能得出∠A′O′B′=∠AOB的依据是()A.(S、S、S)B.(S、A、S)C.(A、S、A)D.(A、A、S)3.等腰三角形的两边长分别为5cm和10cm,则此三角形的周长是()A.15cmB.20cmC.25cmD.20cm或25cm4.某同学把一块三角形的玻璃打碎成了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事方法是()A.带①去B.带②去C.带③去D.①②③都带去5.OP是∠AOB的平分线,则下列说法正确的是()A.射线OP上的点与OA,OB上任意一点的距离相等B.射线OP上的点与边OA,OB的距离相等C.射线OP上的点与OA各点的距离相等D.射线OP上的点与OB上各的距离相等6.下列说法正确的是()A.全等三角形是指形状相同大小相等的三角形B.全等三角形是指面积相等的三角形C.周长相等的三角形是全等三角形D.所有的等边三角形都是全等三角形7.如图,AE⊥BD于E,CF⊥BD于F,AB=CD,AE=CF,则图中全等三角形共有()A.1对B.2对C.3对D.4对8.如图,E,B,F,C四点在一条直线上,EB=CF,∠A=∠D,再添一个条件仍不能证明△ABC≌△DEF的是()A.AB=DEB.DF∥ACC.∠E=∠ABCD.AB∥DE9.如图,DE⊥BC,BE=EC,且AB=5,AC=8,则△ABD的周长为()A.21B.18C.13D.910.如图,点B、C、E在同一条直线上,△ABC与△CDE都是等边三角形,则下列结论不一定成立的是()A.△ACE≌△BCDB.△BGC≌△AFCC.△DCG≌△ECFD.△ADB≌△CEA二、填空题(每题3分,共24分)11.如图,△ABC≌△DEF,A与D,B与E分别是对应顶点,∠B=32°,∠A=68°,AB=13cm,则∠F=度,DE=cm.12.角的对称轴是.13.如图,已知∠1=∠2,要说明△ABC≌△BAD,(1)若以“SAS”为依据,则需添加一个条件是;若以“AAS”为依据,则需添加一个条件是;(3)若以“ASA”为依据,则需添加一个条件是.14.“相等的角是对顶角.”的条件是:,结论是:,此命题是命题(填“真”或“假”).15.已知△ABC≌△DEF,BC=EF=6cm,△ABC的面积为8cm2,则EF边上的高为cm.16.如图,△ABC中,∠C=90°,AC=BC,AD平分∠BAC交BC于点D,DE⊥AB,垂足为E,且AB=10cm,则△DEB的周长是cm.17.在△ABC中,AC=5,中线AD=4,则边AB的取值范围是.18.如图,在△ABC中,∠ABC与∠ACB的平分线交于点O,过点O作DE∥BC,分别交AB、AC于点D、E.若△ADE的周长为9,△ABC的周长是14,则BC=.三、解答题19.如图,已知△ABC中,AB=AC,AD平分∠BAC,求证:△ABD≌△ACD.请补充完整证明△ABD≌△ACD的过程和理由.20.已知:如图,AB与CD相交于点O,∠ACO=∠BDO,OC=OD,CE是△ACO的角平分线.请你先作△ODB的角平分线DF(用尺规作图,不要求写出作法与证明,但要保留作图痕迹);再证明CE=DF.21.如图,两条公路OA和OB相交于O点,在∠AOB的内部有工厂C和D,现要修建一个货站P,使货站P到两条公路OA、OB的距离相等,且到两工厂C、D的距离相等,用尺规作出货站P的位置.(要求:不写作法,保留作图痕迹,写出结论)22.如图,AC⊥BC,BD⊥AD,垂足分别为C,D,AC=BD.求证:BC=AD.23.如图,AB=AC,AD=AE,∠1=∠2,求证:BD=CE.24.如图,已知:AD是BC上的中线,且DF=DE.求证:BE∥CF.25.如图,在△ABC中,AB=AC,∠BAC=120°.AB的垂直平分线交AB于E,交BC于M;AC的垂直平分线交AC于F,交BC于N.连接AM、AN.(1)∠MAN的大小;求证:BM=CN.山东省菏泽市成武县2015~2016学年度八年级上学期期中数学试卷参考答案与试题解析一、选择题:请将答案填在下面的答题栏中,每小题3分,共30分.1.在下列图案中,是轴对称图形的有()A.1个B.2个C.3个D.4个【考点】轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,找出轴对称图形的个数即可.【解答】解:各图案中,是轴对称图形的有:第(3)(4)个,共3个.故选C.【点评】本题考查了轴对称图形的知识,轴对称的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.用直尺和圆规作一个角等于已知角,如图,能得出∠A′O′B′=∠AOB的依据是()A.(S、S、S)B.(S、A、S)C.(A、S、A)D.(A、A、S)【考点】全等三角形的判定与性质;作图—基本作图.【分析】利用SSS可证得△OCD≌△O′C′D′,那么∠A′O′B′=∠AOB.【解答】解:易得OC=0′C',OD=O′D',CD=C′D',那么△OCD≌△O′C′D′,可得∠A′O′B′=∠AOB,所以利用的条件为SSS,故选A.【点评】考查全等三角形“边边边”的判定以及全等三角形的对应角相等这个知识点.3.等腰三角形的两边长分别为5cm和10cm,则此三角形的周长是()A.15cmB.20cmC.25cmD.20cm或25cm【考点】等腰三角形的性质;三角形三边关系.【分析】分5cm是腰或底边两种情况进行讨论.【解答】解:5cm是腰长时,三角形的三边分别为5cm、5cm、10cm,∵5+5=10,∴不能组成三角形,10cm是腰长时,三角形的三边分别为5cm、10cm、10cm,能组成三角形,周长=5+10+10=25cm,综上所述,此三角形的周长是25cm.故选C.【点评】本题考查了等腰三角形的性质,三角形的三边关系,难点在于分情况讨论并利用三角形的三边关系判断是否能够组成三角形.4.某同学把一块三角形的玻璃打碎成了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事方法是()A.带①去B.带②去C.带③去D.①②③都带去【考点】全等三角形的应用.【分析】本题就是已知三角形破损部分的边角,得到原来三角形的边角,根据三角形全等的判定方法,即可求解.【解答】解:第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.应带③去.故选:C.【点评】此题主要考查了全等三角形的判定方法的开放性的题,要求学生将所学的知识运用于实际生活中,要认真观察图形,根据已知选择方法.5.OP是∠AOB的平分线,则下列说法正确的是()A.射线OP上的点与OA,OB上任意一点的距离相等B.射线OP上的点与边OA,OB的距离相等C.射线OP上的点与OA各点的距离相等D.射线OP上的点与OB上各的距离相等【考点】角平分线的性质.【分析】根据角的平分线上的点到角的两边的距离相等和具体图形进行分析即可.【解答】解:OP是∠AOB的平分线,射线OP上的点与OA,OB上任意一点的距离不一定相等,A错误;射线OP上的点与边OA,OB的距离相等,B正确;射线OP上的点与OA各点的距离不一定相等,C错误;射线OP上的点与OA上各点的距离不一定相等,D错误,故选:B.【点评】本题考查的是平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.6.下列说法正确的是()A.全等三角形是指形状相同大小相等的三角形B.全等三角形是指面积相等的三角形C.周长相等的三角形是全等三角形D.所有的等边三角形都是全等三角形【考点】全等三角形的判定与性质.【专题】常规题型.【分析】根据能够完全重合的两个三角形是全等三角形,对各选项分析判断后利用排除法求解.【解答】解:A、形状相同大小相等的三角形能够完全重合,是全等三角形,故本选项正确;B、面积相等的三角形形状不一定相同,所以不一定完全重合,故本选项错误;C、周长相等的三角形,形状不一定相同,大小不一定相等,所以不一定是全等三角形,故本选项错误;D、所有的等边三角形形状都相同,大小与边长有关,边长不相等,则不能够重合,所以不一定是全等三角形,故本选项错误.故选A.【点评】本题主要考查了全等三角形的概念,熟记概念,从形状与大小两方面考虑两三角形是否能够完全重合是解题的关键.7.如图,AE⊥BD于E,CF⊥BD于F,AB=CD,AE=CF,则图中全等三角形共有()A.1对B.2对C.3对D.4对【考点】全等三角形的判定.【分析】由于AE⊥BD于E,CF⊥BD于F得到∠AEB=∠CFD=90°,则可根据“HL”证明出Rt△ABE≌Rt△CDF,根据全等的选择得BE=DF,∠ABE=∠CDF,于是利用“SAS“可证明△AED≌△CFB,则有AD=CB,所以利用”SSS”证明△ABD≌△CDB.【解答】解:∵AE⊥BD于E,CF⊥BD于F,∴∠AEB=∠CFD=90°,在Rt△ABE和Rt△CDF中,,∴Rt△ABE≌Rt△CDF(HL),∴BE=DF,∠ABE=∠CDF,∴DE=BF,同样可利用“SAS”证明△AED≌△CFB,∴AD=BC,∴可利用”SSS”证明△ABD≌△CDB.故选C.【点评】本题考查了全等三角形的判定与性质:判断三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应角相等,对应边相等.8.如图,E,B,F,C四点在一条直线上,EB=CF,∠A=∠D,再添一个条件仍不能证明△ABC≌△DEF的是()A.AB=DEB.DF∥ACC.∠E=∠ABCD.AB∥DE【考点】全等三角形的判定.【分析】由EB=CF,可得出EF=BC,又有∠A=∠D,本题具备了一组边、一组角对应相等,为了再添一个条件仍不能证明△ABC≌△DEF,那么添加的条件与原来的条件可形成SSA,就不能证明△ABC≌△DEF了.【解答】解:A、添加DE=AB与原条件满足SSA,不能证明△ABC≌△DEF,故A选项正确.B、添加DF∥AC,可得∠DFE=∠ACB,根据AAS能证明△ABC≌△DEF,故B选项错误.C、添加∠E=∠ABC,根据AAS能证明△ABC≌△DEF,故C选项错误.D、添加AB∥DE,可得∠E=∠ABC,根据AAS能证明△ABC≌△DEF,故D选项错误.故选:A.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.9.如图,DE⊥BC,BE=EC,且AB=5,AC=8,则△ABD的周长为()A.21B.18C.13D.9【考点】线段垂直平分线的性质.【专题】计算题.【分析】由已知可得,DE是线段BC的垂直平分线,根据其性质可得BD=CD,根据等量代换,即可得出;【解答】解:∵DE⊥BC,BE=EC,∴DE是线段BC的垂直平分线,∴BD=CD,∴△ABD的周长=AB+BD+AD=AB+AC=5+8=13.故选C.【点评】本题主要考查线段的垂直平分线的性质,线段的垂直平分线上的点到线段的两个端点的距离相等.10.如图,点B、C、E在同一条直线上,△ABC与△CDE都是等边三角形,则下列结论不一定成立的是()A.△ACE≌△BCDB.△BGC≌△AFCC.△DCG≌△ECFD.△ADB≌△CEA【考点】全等三角形的判定;等边三角形的性质.【专题】压轴题.【分析】首先根据角间的位置及大小关系证明∠BCD=∠ACE,再根据边角边定理,证明△BCE≌△ACD;由△BCE≌△ACD可得到∠DBC=∠CAE,再加上条件AC=B
本文标题:成武县2015~2016学年度八年级上期中数学试卷含答案解析
链接地址:https://www.777doc.com/doc-7841784 .html