您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 专题1.3-平面直角坐标系章末重难点题型(举一反三)(人教版)(原卷版)
1专题1.3平面直角坐标系章末重难点题型【人教版】【考点1点的坐标与象限(象限的判断)】【方法点拨】掌握第1~4象限内点的坐标符号特点分别是:(+,+)、(-,+)、(-,-)、(+,-).【例1】(2020春•焦作期末)如果P(ab,a+b)在第四象限,那么Q(a,﹣b)在()A.第一象限B.第二象限C.第三象限D.第四象限【变式1-1】(2020春•崇川区校级期末)对于任意实数m,点P(m﹣1,9﹣3m)不可能在()A.第一象限B.第二象限C.第三象限D.第四象限【变式1-2】(2020春•涪城区期末)在平面直角坐标系xOy中,若点A(m2﹣4,m+1)在y轴的非负半轴上,则点B(m﹣1,1﹣2m)在()A.第一象限B.第二象限C.第三象限D.第四象限【变式1-3】(2020•西湖区校级期中)如图,平面直角坐标系中有P、Q两点,其坐标分别为P(4,a)、Q(b,6).根据图中P、Q两点的位置,判断点(9﹣2b,a﹣6)落在第()象限2A.一B.二C.三D.四【考点2坐标轴上点的特征】【方法点拨】坐标系内点的坐标特点:坐标原点(0,0)、x轴(x,0)、y轴(0,y).注意若点在坐标轴上,则要分成在x轴、y轴上两种情况来讨论.【例2】(2020春•孟村县期中)已知点P(3a,a+2)在y轴上,则点P的坐标是()A.(0,2)B.(0,﹣6)C.(2,0)D.(0,6)【变式2-1】(2020春•雨花区校级期末)已知A(a﹣5,2b﹣1)在y轴上,B(3a+2,b+3)在x轴上,则C(a,b)的坐标为.【变式2-2】(2020春•昆明期末)如图,在平面直角坐标系xOy中,点A(a2﹣4,3)在y轴上,点B在x轴上,且横坐标为a,则点B的坐标为.【变式2-3】(2019春•和平区期中)在平面直角坐标系中,已知点A(0,0),|AB|=3,且点B和点A在同一坐标轴上,则点B的坐标为.【考点3点到坐标轴的距离】【方法点拨】点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值.【例3】(2020春•邵东市期末)若M在平面直角坐标系第二象限,且M到x轴的距离为4,到y轴距离为3,则点M的坐标为()A.(3,﹣4)B.(4,﹣3)C.(﹣4,3)D.(﹣3,4)【变式3-1】(2019春•鹿邑县期中)已知点P(x,y)到x轴的距离为2,到y轴的距离为3,且x+y>0,x<0,则点P的坐标为()A.(﹣2,3)B.(2,3)C.(3,﹣2)D.(3,2)3【变式3-2】(2020春•越秀区校级月考)在平面直角坐标系中,点A的坐标是(3a﹣5,a+1).若点A到x轴的距离与到y轴的距离相等,且点A在y轴的右侧,则a的值为()A.1B.2C.3D.1或3【变式3-3】(2020春•郁南县期末)若点P(2x,x﹣3)到两坐标轴的距离之和为5,则x的值为.【考点4角平分线上点的特征】【方法点拨】象限角平分线上点的坐标特点:第1、3象限中x=y,第二、四象限中x+y=0.【例4】(2020•新吴区期中)已知点A(m2﹣2,5m+4)在第一象限的角平分线上,则m的值为()A.6B.﹣1C.﹣1或6D.2或3【变式4-1】(2020•平南县期中)若点N在第一、三象限的角平分线上,且点N到y轴的距离为2,则点N的坐标是()A.(2,2)B.(﹣2,﹣2)C.(2,2)或(﹣2,﹣2)D.(﹣2,2)或(2,﹣2)【变式4-2】(2020春•龙华区校级期末)若点P(3a﹣2,2a+7)在第二、四象限的角平分线上,则点P的坐标是.【变式4-3】(2020秋•高邮市期中)在平面直角坐标系xOy中,有一点P(a,b),实数a,b,m满足以下两个等式:2a﹣6m+4=0,b+2m﹣8=0.(1)当a=1时,点P到x轴的距离为;(2)若点P在第一、三象限的角平分线上,求点P的坐标;(3)当a<b时,则m的取值范围是.【考点5点的坐标与象限(新定义问题)】【例5】(2020春•东西湖区期中)若定义:f(a,b)=(﹣a,b),g(m,n)=(m,﹣n),例如f(1,2)=(﹣1,2),g(﹣4,﹣5)=(﹣4,5),则g(f(3,﹣4))的值为()A.(3,﹣4)B.(﹣3,4)C.(3,4)D.(﹣3,﹣4)【变式5-1】(2019春•无为县期末)如图,平面中两条直线l1和l2相交于点O,对于平面上任意点M,若p,q分别是M到直线l1和l2的距离,则称有序非负实数对(p,q)是点M的“距离坐标”.根据上述定义,有以下几个结论:①“距离坐标”是(0,2)的点有1个;②“距离坐标”是(3,4)的点有4个;③“距离坐标”(p,q)满足p=q的点有4个.4其中正确的有()A.0个B.1个C.2个D.3个【变式5-2】(2019秋•锦江区校级期中)对于平面坐标系中任意两点A(x1,y1),B(x2,y2)定义一种新运算“*”为:(x1,y1)*(x2,y2)=(x1y2,x2y1).根据这个規则计算:(3,5)*(﹣1,2)=;若A(x1,y1)在第三象限,B(x2,y2)在第四象限,则A*B在第象限.【变式5-3】(2020春•海淀区期末)在平面直角坐标系xOy中,对于点P(x,y),如果点Q(x,y′)的纵坐标满足y′={𝑥−𝑦(当𝑥≥𝑦时)𝑦−𝑥(当𝑥<𝑦时),那么称点Q为点P的“关联点”.请写出点(3,5)的“关联点”的坐标;如果点P(x,y)的关联点Q坐标为(﹣2,3),则点P的坐标为.【考点6点的坐标确定位置】【方法点拨】首先由点的坐标确定坐标系,进而可确定所求位置的坐标.【例6】(2020春•官渡区期末)棋在中国有着三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏.如图是局象棋残局,若在中国象棋盘上建立平面直角坐标系,使表示棋子“馬”和“車”的点的坐标分别为(4,3),(﹣2,1),则表示“炮”的点的坐标为()A.(1,3)B.(3,1)C.(2,3)D.(1,2)【变式6-1】(2020春•海淀区校级期末)如图所示,某战役缴获敌人防御工事坐标地图碎片,依稀可见,一号暗堡的坐标为(4,2),四号暗堡的坐标为(﹣2,4),原有情报得知:敌军指挥部的坐标为(0,0),你认为敌军指挥部的位置大约是()5A.A处B.B处C.C处D.D处【变式6-2】(2020春•诸城市期末)如图为东明一中新校区分布图的一部分,方格纸中每个小方格都是边长为1个单位的正方形,若教学楼的坐标为A(1,2),图书馆的位置坐标为B(﹣2,﹣1),解答以下问题:(1)在图中找到坐标系中的原点,并建立直角坐标系;(2)若体育馆的坐标为C(1,﹣3),食堂坐标为D(2,0),请在图中标出体育馆和食堂的位置;(3)顺次连接教学楼、图书馆、体育馆、食堂得到四边形ABCD,求四边形ABCD的面积.【变式6-3】(2020春•永年区期末)如图,在边长为1个单位长度的小正方形组成的网格中,小明家可用坐标(﹣1,2)表示,汽车站可用坐标(3,﹣1)表示.(1)建立平面直角坐标系,画出x轴和y轴;(2)某星期日早晨,小明同学从家出发,沿(0,1)→(﹣2,﹣1)→(﹣1,﹣2)→(0,﹣1)→(1,0)→(2,﹣1)→(2,2)的路线转了一圈,又回到家里,写出他路上经过的地方;(3)连接他在上一问中经过的地点,你得到了什么图形?6【考点7坐标与图形(平行于坐标轴)】【方法点拨】与坐标轴平行的直线上点的坐标特点:与x轴平行,纵坐标y相等;与y轴平行,横坐标x相等.【例7】(2020春•渝中区期末)在平面直角坐标系中,已知线段MN∥x轴,且MN=3,若点M的坐标为(﹣2,1),则点N的坐标为.【变式7-1】(2020春•塔河县校级期末)已知A(1,2),B(x,y),AB∥x轴,且B到y轴距离为2,则点B的坐标是.【变式7-2】(2020春•江岸区校级月考)已知点A(3a﹣6,a+4),B(﹣3,2),AB∥y轴,点P为直线AB上一点,且PA=2PB,则点P的坐标为.【变式7-3】(2020春•枞阳县期末)平面立角坐标系中,点A(﹣2,3),B(2,﹣1),经过点A的直线a∥x轴,点C是直线a上的一个动点,当线段BC的长度最短时,点C的坐标为()A.(0,﹣1)B.(﹣1,﹣2)C.(﹣2,﹣1)D.(2,3)【考点8坐标表示平移(点的平移)】【方法点拨】平面直角坐标内点的平移规律,设a0,b0(1)一次平移:P(x,y)P'(x+a,y)P(x,y)P'(x,y-b)(2)二次平移:【例8】(2020春•迁西县期末)在平面直角坐标系中,点A'(2,﹣2)可以由点A(﹣2,3)通过两次平移得到,则正确的是()A.先向左平移4个单位长度,再向上平移5个单位长度向右平移a个单位向下平移b个单位P(x,y)P(x-a,y+b)向左平移a个单位再向上平移b个单7B.先向右平移4个单位长度,再向上平移5个单位长度C.先向左平移4个单位长度,再向下平移5个单位长度D.先向右平移4个单位长度,再向下平移5个单位长度【变式8-1】(2020春•舞钢市期末)已知A(3,﹣2),B(1,0),把线段AB平移至线段CD,其中点A、B分别对应点C、D,若C(5,x),D(y,0),则x+y的值是()A.﹣1B.0C.1D.2【变式8-2】(2020春•硚口区期末)在平面直角坐标系中,将点A(m,m+9)向右平移4个单位长度,再向下平移2个单位长度,得到点B,若点B在第二象限,则m的取值范围是()A.﹣11<m<﹣4B.﹣7<m<﹣4C.m<﹣7D.m>﹣4【变式8-3】(2020春•思明区校级期末)在平面直角坐标系中,将A(m2,1)沿着x的正方向向右平移m2+3个单位后得到B点.有四个点M(﹣m2,1)、N(m2,m2+3)、P(m2+2,1)、Q(3m2,1),一定在线段AB上的是()A.点MB.点NC.点PD.点Q【考点9坐标表示平移(图形的平移)】【方法点拨】解题的关键是掌握在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.(即:横坐标,右移加,左移减;纵坐标,上移加,下移减.)【例9】(2019春•无棣县期中)如图,三角形ABC经过一定的平移变换得到三角形A'B'C',若三角形ABC上一点M的坐标为(m,n),那么M点的对应点M'的坐标为.【变式9-1】(2020春•明水县校级期中)如图,三角形ABC中任意一点P(x,y),经过平移后对应点为P1(x+4,y﹣2),将三角形ABC作同样的平移得到三角形A1B1C1,若点A的坐标为(﹣4,5),则点A1的坐标为.8【变式9-2】(2019春•漯河期中)已知△ABC内任意一点P(a,b)经过平移后对应点P1(c,d),已知A(﹣3,2)在经过此次平移后对应点A1(4,﹣3),则a﹣b﹣c+d的值为()A.2B.﹣2C.12D.﹣12【变式9-3】(2019春•和平区期中)如图,三角形A'B'C'是由三角形ABC经过某种平移得到的,点A与点A',点B与点B',点C与点C'分别对应,观察点与点坐标之间的关系,解答下列问题.(1)分别写出点A、点B、点C、点A'、点B'、点C'的坐标,并说明三角形A'B'C'是由三角形ABC经过怎样的平移得到的.(2)若点M(a+2,4﹣b)是点N(2a﹣3,2b﹣5)通过(1)中的平移变换得到的,求(b﹣a)2的值.【考点10坐标系中的面积问题】【方法点拨】直角坐标系中不规则图形面积的求法,一般需要作x轴(y轴)的垂线,将原图形分割为可求面积的图形,再求其面积和.【例10】(2019秋•会宁县期末)如图,右边坐标系中四边形的面积是()9A.4B.5.5C.4.5D.5【变式10-1】(2020春•海门市期末)如图,A、B两点的坐标分别为(2,4),(6,0),点P是x轴上一点,且△ABP的面积为6,则点P的坐标为.
本文标题:专题1.3-平面直角坐标系章末重难点题型(举一反三)(人教版)(原卷版)
链接地址:https://www.777doc.com/doc-7844977 .html