您好,欢迎访问三七文档
当前位置:首页 > 建筑/环境 > 工程监理 > 2019年春季六年级奥数培训教材【93页】
目录第一章数与代数第一讲比较大小第二章实践与应用(一)第一讲行程问题(一)第二讲行程问题(二)第三讲行程问题(三)第四讲流水行船问题第三章空间与图形第一讲表面积、体积(一)第二讲表面积、体积(二)第四章数论与整除第一讲应用同余解题第五章应用(二)第一讲“牛吃草”问题第二讲不定方程第三讲比例(补充)第六章组合与推理第一讲最大、最小问题第二讲乘法和加法原理第三讲抽屉原理(一)第四讲抽屉原理(二)第五讲逻辑推理(一)第六讲逻辑推理(二)第其讲对策问题第一章数与代数第一讲比较大小【专题导引】我们已经掌握了基本的比较整数、小数、分数大小的方法。本周将进一步研究如何比较一些较复杂的数或式子的值的大小。解答这种类型的题目,需要将原题进行各种形式的转化,再利用一些不等式的性质进行推理判断。如:ab0,那么a2b2;如果ab0,那么baba;如果111,b0,那么ab等等。比较大小时,如果要比较的分数都接近1时,可先用1减去原分数,再根据被减数相等(都是1),减数越小,差越大的道理判断原分数的大小。如果两个数的倒数接近,可以先用1分别除以这两个数。再根据被除数相等,商越小,除数越大的道理判断原数的大小。除了将比较大小转化为比差、比商等形式外,还常常要根据算式的特点将它作适当的变形后再进行判断。【典型例题】【例1】比较888889888884777778777773和的大小。【试一试】1、比较666663666661777777777775和的大小。2、将9998988987987798769876698765,,,按从小到大的顺序排列出来。【例2】比较1111111111111111和哪个分数大?【试一试】1、比较166331666333BA和的大小。2、比较888888887444444443222222221111111110和的大小。【例3】16151413121110987654321的积与0.25比较,哪个大?【试一试】:1、3635181716151413121110987654321的积与61比较,哪个大?2、1009987654321的积与101比较,哪个大?【例4】已知A×15×9911=B×154332=C×15.2÷54=D×14.8×7473。A,B,C,D四个数中最大的是_____________。【试一试】1、已知A×51154%75%90321EDCB。把A,B,C,D,E这五个数从小到大排列,第2个数是___________。2、有八个数,2513472415.09532,15.0...,,,,是其中的六个数,如果从小到大排列时,第四个数是.15.0,那么从大到小排列时,第四个数是哪个?【﹡例5】下图中有两个红色的正方形,两个蓝色的正方形,它们的面积已在图中标出(单位:厘米2)。问:红色的两个正方形的面积大,还是蓝色的两个正方形面积大?【﹡试一试】1、如图所示,有两个红色的圆和两个蓝色的圆。红色两圆的直径分别是1992厘米和1949厘米,蓝色两圆的半径分别是1990厘米和1951厘米。问:红色两圆面积之和大,还是蓝色两圆的面积之和大?2、如图所示,正方形被一条曲线分成了A、B两部分,如果xy,试比较A、B两部分周长的大小。课外作业蓝蓝20102红红199722011219962红蓝红蓝AByx家长签名:1、比较652974652971235862235861和的大小。2、比较9999994999999188888898888887和的大小。3、10000011000000987654的积与0.002比较,哪个大?4、在下面四个算式中,最大的得数是几?(1)20191171()(2)30291241)((3)40371311)((4)50471411)(﹡5、问1009987654321与101相比,哪个更大?为什么?第一章实践与应用(一)第一讲行程问题(一)【专题导引】行程问题的三个基本量是距离、速度和时间。其互逆关系可用乘、除法计算,方法简单,但应注意行驶方向的变化,按所行方向的不同可分为三种:(1)相遇问题;(2)相离问题;(3)追及问题。行程问题的主要数量关系是:距离=速度×时间。它大致分为以下三种情况:(1)相向而行:相遇时间=距离÷速度和。(2)相背而行:相背距离=速度和×时间。(3)同向而行:速度慢的在前,快的在后。追及时间=追及距离÷速度差。在环行跑道上,速度快的在前,慢的在后。追及距离=速度差×时间。解行程问题时,要注意充分利用图示把题中的情形形象地表示出来,有助于分析数量关系,有助于迅速地找到解题思路。【典型例题】【例1】两辆汽车同时从某地出发,运送一批货物到距离165千米的工地。甲车比乙车早到48分钟,当甲车到达时,乙车还距工地24千米。甲车行完全程用了多少个小时?【试一试】1、甲、乙两地之间的距离是420千米。两辆汽车同时从甲地开往乙地。第一辆汽车每小时行42千米,第二辆汽车每小时行28千米。第一辆汽车到乙地立即返回。两辆车从开出到相遇共用多少小时?2、A、B两地相距900千米,甲车由A地到B地需15小时,乙车由B地到A地需10小时。两车同时从两地开出,相遇时甲车距B地还有多少千米?【例2】两辆汽车同时从东、西两站相向开出。第一次在离东站60千米的地方相遇。之后,两车继续以原来的速度前进。各自到达对方车站后都立即返回。又在距中点西侧30千米处相遇。两站相距多少千米?【试一试】1、两辆汽车同时从南、北两站相对开出,第一次在离南站55千米的地方相遇,之后两车继续以原来的速度前进。各自到站后都立即返回,又在距中点南侧15千米处相遇。两站相距多少千米?2、两列火车同时从甲、乙两站相向而行。第一次相遇在离甲站40千米的地方。两车仍以原速继续前进。各自到站后立即返回,又在离乙站20千米的地方相遇。两站相距多少千米?【例3】A、B两地相距960米。甲、乙两人分别从A、B两地同时出发。若相向而行,6分钟相遇;若同向行走,80分钟甲可以追上乙。甲从A地走到B地要用多少分钟?【试一试】1、一条笔直的马路通过A、B两地,甲、乙两人同时从A、B两地出发,若相向行走,12分钟相遇;若同向行走,8分钟甲就落在乙后面1864米。已知A、B两地相距1800米。甲、乙每分钟各行多少米?2、父、子二人在一400米长的环行跑道上散步。他俩同时从同一地点出发。若相背而行,762分钟相遇;若同向而行,3226分钟父亲可以追上儿子。问:在跑道上走一圈,父、子各需要多少分钟?【例4】上午8时8分,小明骑自行车从家里出发。8分钟后,爸爸骑摩托车去追他。在离家4千米的地方追上了他,然后爸爸立即回家。到家后他又立即回头去追小明。再追上他的时候,离家恰好是8千米,这时是几时几分?【试一试】1、A、B两地相距21千米,上午8时甲、乙分别从A、B两地出发,相向而行。甲到达B地后立即返回,乙到达A地后立即返回。上午10时他们第二次相遇。此时,甲走的路程比乙走的多9千米。甲一共行了多少千米?甲每小时走多少千米?2、张师傅上班坐车,回家步行,路上一共要用80分钟。如果往、返都坐车,全部行程要50分钟;如果往、返都步行,全部行程要多长时间?【例5】甲、乙、丙三人,每分钟分别行68米、70.5米、72米。现甲、乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙和乙相遇后,又过2分钟与甲相遇。东、西两镇相距多少千米?【试一试】1、有甲、乙、丙三人,甲每分钟行70米,乙每分钟行60米,丙每分钟行75米,甲、乙从A地去B地,丙从B地去A地,三人同时出发,丙遇到甲8分钟后,再遇到乙。A、B两地相距多少千米?2、一只狼以每秒15米的速度追捕在它前面100米处的兔子。兔子每秒行4.5米,6秒钟后猎人向狼开了一枪。狼立即转身以每秒16.5米的速度背向兔子逃去。问:开枪多少秒后兔子与狼又相距100米?课外作业家长签名:1、甲、乙两辆汽车早上8点钟分别从A、B两城同时相向而行。到10点钟时两车相距112.5千米。继续行进到下午1时,两车相距还是112.5千米。A、B两地间的距离是多少千米?2、甲、乙两辆汽车同时从A、B两地相对开出。第一次相遇时离A站有90千米。然后各按原速继续行驶,分别到达对方车站后立即沿原路返回。第二次相遇时离A地的距离占A、B两站间全程的65%。A、B两站间的路程是多少千米?3、两条公路呈十字交叉。甲从十字路口南1350米处向北直行,乙从十字路口处向东直行。同时出发10分钟后,二人离十字路口的距离相等;二人仍保持原来速度直行,又过了80分钟,这时二人离十字路口的距离又相等。求甲、乙二人的速度。4、当甲在60米赛跑中冲过终点线时,比乙领先10米,比丙领先20米。如果乙和丙按原来的速度继续冲向终点,那么乙到达终点时将比丙领先多少米?﹡5、甲、乙两车同时从A地开往B地,乙车6小时可以到达,甲车每小时比乙车慢8千米,因此比乙车迟一小时到达。A、B两地间的路程是多少千米?第二讲行程问题(二)【专题导引】在行程问题中,与环形有关的行程问题的解决方法与一般行程问题的方法类似,但有两点值得注意:一是两人同地背向运动,从第一次相遇到下次相遇共行一个全程;二是同地、同向运动时,甲追上乙时,甲比乙多行一个全程。【典型例题】【例1】甲、乙、丙三人沿着湖边散步,同时从湖边一固定点出发。甲按顺序针方向行走,乙与丙按逆时针方向行走。甲第一次遇到乙后411分遇到丙,再过433分钟第二次遇到乙。已知乙的速度是甲的32,湖的周长为600米,求丙的速度。【试一试】1、甲、乙、丙三人环湖跑步,同时从湖边一固定点出发。乙、丙两人同向,甲与乙、丙反向。在甲第一次遇到乙后411分钟第一次遇到丙;再过433分钟第二次遇到乙。已知甲的速度与乙的速度比是3:2,湖的周长为2000米,求三人的速度。2、兄、妹二人在周长为30米的圆形小池边玩。从同一地点同时背向绕水池而行。兄每秒走1.3米,妹每秒走1.2米。他们第10次相遇时,妹还要走多少米才能回到出发点?【例2】甲、乙两人在同一条椭圆形跑道上做特殊训练。他们同时从同一地点出发,沿相反方向跑。每人跑完第一圈到达出发点后,立即回头加速跑第二圈。跑第一圈时,乙的速度是甲的32。甲跑第二圈时速度比第一圈提高了31,乙跑第二圈时速度提高了51。已知甲、乙两人第二次相遇点距第一次相遇点190米。这条椭圆形跑道长多少米?【试一试】:1、小明绕一个圆形长廊游玩。顺时针走,从A处到C处要12分钟,从B处到A处要15分钟,从C处到B处要11分钟。从A处到B处需要多少分钟(如下图所示)?ABC2、摩托车与小汽车同时从A地出发,沿长方形的边行驶,结果在B地相遇。已知B地与C地的距离是4千米,且小汽车的速度为摩托车速度的32。这条长方形路的周长是多少千米(如图)?【例3】绕湖的一周是24千米,小张和小王在湖边某一地点同时出发反向而行。小王以每小时4千米速度走1小时后休息5分钟,小张以每小时6千米速度每走50分钟后休息10分钟。两人出发多少时间第一次相遇?【试一试】1、在400米环行跑道上,A、B两点相距100米。甲、乙两人分别从A、B两点同时出发,按逆时针方向跑步,甲每秒行5米,乙每秒行4米,每人跑100米都要停留10秒钟。那么,甲追上乙需要多少秒?2、一辆汽车在甲、乙两站之间行驶。往、返一次共用去4小时。汽车去时每小时行45千米,返回时每小时行驶30千米,那么甲、乙两站相距多少千米?【例4】一个游泳池长90米。甲、乙二人分别从游泳池的两端同时出发,游到另一端立即返回。照这样往、返游,两人游10分钟。已知甲每秒游3米,乙每秒游2米。在出发后的两分钟内,两人相遇了几次?ABC【试一试】1、甲、乙两个运动员同时从游泳池的两端相向出发做往、返游泳训练。从池的一端到另一端甲要3分钟,乙要3.2分钟。两人下水后连续游了48分钟,一共相遇了多少次?2、一游泳池泳道长100米,甲、乙两个运动员从泳道的两端同时下水,做往、返训练15分钟,甲每分钟
本文标题:2019年春季六年级奥数培训教材【93页】
链接地址:https://www.777doc.com/doc-7865295 .html