您好,欢迎访问三七文档
当前位置:首页 > 建筑/环境 > 给排水/暖通与智能化 > Sn和an答案
1Sn与an一、已知Sn,求an已知数列前n项和Sn,得)2()1(11nSSnSannn.1.a1不适合n≥2时的an(1)一个数列的前n项和Sn=8n-3,则它的通项公式an=.287151nnann(2)数列{an}中,Sn=n2+n-2,求an。解:当n=1时,S1=a1=0,当n≥2时,an=Sn-Sn-1=(n2+n-2)-[(n-1)2+(n-1)-2]=2n,∴)2(2)1(0nnnan。(3)已知数列{an}的前n项和为Sn=2n2-3n+1,则它的通项公式为。)2(54)1(0nnnan(4)已知数列{an}的前k项的和Sk满足:Sk=(k+2)Sk+1,求通项an.解:由Sk=(k+2)Sk+1得Sk=11k。故a1=S1=21。当n≥2时,an=Sn-Sn-1=)1(11nn=)1(1nn。∴通项为2)1(1121nnnnan(5)设数列1,2,4,8,…的前n项和是Sn=a+bn+cn2+dn3,求a、b、c、d的值和数列的通项.解:∵Sn=a+bn+cn2+dn3,当n≥2时,Sn-1=a+b(n-1)+c(n-1)2+d(n-1)3,两式相减得an=b+(2n-1)c+(3n2-3n+1)d(n≥2),将a1=1,a2=2,a3=4,a4=8代入得112311388377419527311432aadcbaSadcbdcbadcbadcba,,)2(43)1(12nnnnan。(6)已知数列{an}前n项的和Sn满足条件lgSn+(n-1)lgb=lg(bn+1+n-2),其中b0且b1,求数列{an}的通项。解:由lgSn+(n-1)lgb=lg(bn+1+n-2)得lgSn=lg(bn+1+n-2)-lgbn-1=lg112nnbnb,∴Sn=121122nnnbnbbnb,且Sn0。当n=1时,a1=S1=b2-1(b1),2当n≥2时,an=Sn-Sn-1=12123)1(32nnnbbnbbnbn.∴)1()2(23)1()1(112bnbbnbnbann。2.a1也适合n≥2时的an(1)已知数列{an}的前n项和为Sn=3n2-2n,求数列的通项公式。解:a1=S1=1,当n≥2时,an=Sn-Sn-1=(3n2-2n)-[3(n-1)2-2(n-1)]=6n-5,a1也符合,∴an=6n-5.(2)已知数列{an}的前n项和12)1(2nnnnSn,求通项an。解:化简得111nSn,当n≥2时,an=Sn-Sn-1=)1(1)11()111(nnnn,又a1=S1=21适合此式,∴an=)1(1nn。(3)公差为d的等差数列的前n项和为Sn=n(1-n),那么(D)A.d=2,an=2n-2B.d=2,an=2n+2C.d=-2,an=-2n-2D.d=-2,an=-2n+23.已知Sn,求an的某些项(1)已知数列{an}的前n项和112nnnSn,求此数列的前3项。解:43,212112122,21233212211SSaaSaSa(2)已知数列{an}的前n项和为Sn=nn12,则a8=。56178SS(3)数列{an}的前n项的和Sn=2n2+1,则a1,a5的值依次为(D)(A)2,14(B)2,18(C)3,4(D)3,18解:a1=S1=3,a5=S5-S4=51-33=18(4)已知数列{an}的前n项和Sn=an2+bn+c,且S1、S2、S3依次是-2,0,6,那么a100=。解:0426390242321cbacbaScbaScbaS,∴Sn=2n2-4n,∴a100=S100-S99=394。(5)已知数列{an}的前n项和Sn=n2-2n+3,那么这个数列的前三项为(B)(A)-1,1,3(B)2,1,3(C)6,1,3(D)2,1,6(6a)数列{an}的前n项和Sn=nn13,求a16+a17+a18+a19+a20的值。解:a16+a17+a18+a19+a20=S20-S15=601151153201203。3(6b)若数列{an}前n项和)1(log101nSn,则a10+a12+…+a99=。S99S10=191991log1014.已知数列{an}的前n项和Sn=n2+21a1,求通项an。解:由a1=S1=1+21a1,得a1=2。当n≥2时,Sn=n2+1,而an=Sn-Sn-1=n2-(n-1)2=2n-1∴21212nnnan5.两数列{an},{bn}的前n项和分别为Sn=n(n+4)和Sn=n(2n-3)(1)求两数列的通项an和bn;(2)依次将两数列的对应项相加作成新数列{an+bn}.求此数列的通项公式,判断它是不是等差数列.(3)问:数列{an}和{bn}是否存在相同的项?如果存在,求依次取这些相同的项作成的新数列的通项公式.解:(1)对数列{an}:a1=S1=5;当n≥2时,有an=Sn-Sn-1=n(n+4)-(n-1)[(n-1)+4]=2n+3又a1=5适合上式,故通项为an=2n+3.对数列{bn}:b1=S1=-1;当n≥2时,有bn=Sn-S′n-1=n(2n-3)-(n-1)[2(n-1)-3]=4n-5又b1=-1适合上式,故通项为bn=4n-5.(2)cn=an+bn=(2n+3)+(4n-5)=6n-2故{an+bn}的通项公式为cn=4+(n-1)6,它是首项为4公差为6的等差数列.(3)假定{an}与{bn}存在相同的项,设an=bm,则有2n+3=4m-5n=2m-4故对于2m-4>0,即m>2的一切自然数m,n都为正整数.故{an}与{bn}存在相项.这些项依次是{bn}的第3,4,5…项,也就是{an}的第2,4,6,…项.即所求的新数列为{tn}:7,11,15,….其首项为7,公差为4(与{bn}的公差相同).故新数列的通项公式是:tn=7+(n-1)·4=4n+3.6.已知等差数列{an}的前n项的和Sn=(p+1)n2-(q+1)n+q-p-3(1)求此数列的首项和公差;(2)试证:当p>-1时,此数列单调递增;(3)试问:当p=41时,从第几项开始,此数列的各项都大于零?解:(1){an}成等差数列的充要条件是q-3-p=0,即q=p+3.这时,Sn=(p+1)n2-(p+4)n=-3n+)1(22)1(pnn,故a1=-3,d=2(p+1).(2)当p>-1时,an+1-an=d>0对一切自然数n都成立,故{an}单调递增.4(3)当p=41时,d=2(141)=23;an=-3+(n-1)×230,得n3。故从第4项起,数列的各项都大于零。7.已知数列{an}中,a1=41,Sn=1211nnSS(n≥2),求an。解:由Sn=1211nnSS得2Sn1Sn+SnSn1=0,两边同除以Sn1Sn,得2111nnSS,)(22122141111NnnSnSaSnn,∴)1(41)2()1(211nnnnSSannn。二、已知Sn与an的关系,求Sn或an1.利用an=SnSn-1(n≥2)消去Sn,转化为an的递推关系,其中a1=S1.(1a)若数列{an}的前n项和Sn与通项an之间满足关系Sn=1+pan(p是不为0,1的常数),试求出数列{an}的通项公式,并说明它是什么数列。解:a1=S1=1+pa1,p0,1,∴a1=p11,当n≥2时,an=Sn-Sn-1=p(an-an-1),∴(p-1)an=pan-1,∴an=nnppppppp)1(111])1(1[11是以p11为首项,1pp为公比的等比数列。(1b)数列{an}满足:Sn=1+2an,求通项an.解:由a1=S1=1+2a1得a1=-1.当n≥2时,an=Sn-Sn-1=2an-2an-1,所以an=2an-1=22an-2=…=2n-1a1=-2n-1,a1=-1也适合此式,故通项an=-2n-1.(1c)已知数列{an}中,若a1=1,Sn+1=4an+2(nN),求an。解:由已知关系式得Sn+1Sn=4(anan-1),即an+1=4(anan-1)(n≥2,n∈N),即an+12an=2(an2an-1),令bn=an+12an,则bn=2bn-1,{bn}是以b1=a22a1=3(a1+a2=4a1+2得a2=5)为首项,2为公比的等比数列,即bn=3·2n-1,则an+12an=3·2n-1,两边除以2n+1,得432211nnnnaa,令nnnca2,则{cn}是以c1=2121a为首项,43为公差的等差数列,cn=4143n,即41432nann,an=)13(22nn.(1d)已知数列{an}中,若a1=1,Sn+1=4an+2(nN),5(I)设bn=an+12an,求bn;(II)设nnnaaC211,求数列{Cn}的前n项和Tn;(III)设nnnad2,求d2005。解:(I)∵Sn+1=4an+2,∴Sn+2=4an+1+2,∴an+2=4an+14an,∴an+22an+1=2(an+1an),由bn=an+12an,得bn+1=2bn,∴数列{bn}是公比为2的等比数列。又a1=1,S2=4a1+2,∴a2=5,∴b2=a22a1=3,∴bn=32n1;(II)∵11231121nnnnnbaaC,∴C1=31,公比为21,)211(32211)211(31nnnT(III)∵nnnad2,∴432232222211111111nnnnnnnnnnnnnbaaaadd,∴{dn}是以d1=2121a为首项,43为公差的等差数列,∴d2005=2115034320042120041dd。(1d)如果数列{an}的前n项的和Sn=23an-3,求这个数列的通项公式。解:a1=S1=23a1-3,∴a1=6,当n≥2时,由Sn=23an-3,得Sn-1=23an-1-3,两式相减得an=23an-23an-1,∴an=3an-1,∴an=63n-1。(2)已知数列{an}的前n项和是Sn,且对于任意正整数n,Sn=6an123n,求通项公式an。解:由Sn=6an123n,得a1=23。当n≥2时,an=Sn-Sn-1=an+an-1+123n,即2nan-2n-1an-1=3,∴{2nan}是等差数列,首项为2a1=3,公差d=3,∴2nan=3n,∴nnna23。(3)数列{an}的前n项的和为Sn,若S1=1,S2=2,且Sn+1-3Sn+2Sn-1=0(n≥2,nN),求数列{an}的通项公式。解:由Sn+1-3Sn+2Sn-1=0得Sn+1-Sn=2(Sn-Sn-1),∴an+1=2an(n≥2),a1=1,a2=1,∴)2(2)1(12nnann。(4)在数列{an}中,an0,Sn是它的前n项的和,且2nS=an+1(nN)。6(i)求Sn和an;(ii)求证:211121nSSS。解:(i)由2nS=an+1两边平方,得4Sn=an2+2an+1,∴4Sn-1=an-12+2an-1+1,两式相减得4an=(an2an12)+2(anan1),∴(an+an1)(anan12)
本文标题:Sn和an答案
链接地址:https://www.777doc.com/doc-7887937 .html