您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 管理学资料 > 高考数学第八章第5讲
第5讲椭圆第八章平面解析几何栏目导引知能训练轻松闯关名师讲坛素养提升典例剖析考点突破教材回顾夯实基础第八章平面解析几何1.椭圆的定义条件结论1结论2平面内的动点M与平面内的两个定点F1,F2M点的轨迹为椭圆________为椭圆的焦点|MF1|+|MF2|=2a________为椭圆的焦距2a>|F1F2|F1、F2|F1F2|栏目导引知能训练轻松闯关名师讲坛素养提升典例剖析考点突破教材回顾夯实基础第八章平面解析几何2.椭圆的标准方程和几何性质标准方程x2a2+y2b2=1(a>b>0)y2a2+x2b2=1(a>b>0)图形性质范围-a≤x≤a-b≤y≤b-b≤x≤b-a≤y≤a对称性对称轴:____________对称中心:(0,0)x轴、y轴栏目导引知能训练轻松闯关名师讲坛素养提升典例剖析考点突破教材回顾夯实基础第八章平面解析几何标准方程x2a2+y2b2=1(a>b>0)y2a2+x2b2=1(a>b>0)性质顶点A1(-a,0),A2(a,0)B1(0,-b),B2(0,b)A1(0,-a),A2(0,a)B1(-b,0),B2(b,0)轴长轴A1A2的长为________短轴B1B2的长为________焦距|F1F2|=________离心率e=________,e∈(0,1)a,b,c的关系c2=________2a2b2ccaa2-b2栏目导引知能训练轻松闯关名师讲坛素养提升典例剖析考点突破教材回顾夯实基础第八章平面解析几何1.辨明两个易误点(1)椭圆的定义中易忽视2a>|F1F2|这一条件,当2a=|F1F2|时,其轨迹为线段F1F2,当2a<|F1F2|时,不存在轨迹.(2)求椭圆的标准方程时易忽视判断焦点的位置,而直接设方程为x2a2+y2b2=1(a>b>0).栏目导引知能训练轻松闯关名师讲坛素养提升典例剖析考点突破教材回顾夯实基础第八章平面解析几何2.求椭圆标准方程的两种方法(1)定义法:根据椭圆的定义,确定a2,b2的值,结合焦点位置可写出椭圆方程.(2)待定系数法:若焦点位置明确,则可设出椭圆的标准方程,结合已知条件求出a、b;若焦点位置不明确,则需要分焦点在x轴上和y轴上两种情况讨论,也可设椭圆的方程为Ax2+By2=1(A>0,B>0,A≠B).栏目导引知能训练轻松闯关名师讲坛素养提升典例剖析考点突破教材回顾夯实基础第八章平面解析几何1.(选修21P48练习T3(1)改编)已知中心在原点的椭圆C的右焦点为F(1,0),离心率等于12,则C的方程是()A.x23+y24=1B.x24+y23=1C.x24+y22=1D.x24+y23=1D解析:右焦点为F(1,0)说明两层含义:椭圆的焦点在x轴上;c=1.又离心率为ca=12,故a=2,b2=a2-c2=4-1=3,故椭圆的方程为x24+y23=1.栏目导引知能训练轻松闯关名师讲坛素养提升典例剖析考点突破教材回顾夯实基础第八章平面解析几何2.若直线x-2y+2=0经过椭圆的一个焦点和一个顶点,则该椭圆的标准方程为()A.x25+y2=1B.x24+y25=1C.x25+y2=1或x24+y25=1D.以上答案都不对C栏目导引知能训练轻松闯关名师讲坛素养提升典例剖析考点突破教材回顾夯实基础第八章平面解析几何解析:直线与坐标轴的交点为(0,1),(-2,0),由题意知当焦点在x轴上时,c=2,b=1,所以a2=5,所求椭圆的标准方程为x25+y2=1.当焦点在y轴上时,b=2,c=1,所以a2=5,所求椭圆的标准方程为y25+x24=1.故选C.栏目导引知能训练轻松闯关名师讲坛素养提升典例剖析考点突破教材回顾夯实基础第八章平面解析几何3.已知椭圆的方程为2x2+3y2=m(m>0),则此椭圆的离心率为()A.13B.33C.22D.12B解析:2x2+3y2=m(m>0)⇒x2m2+y2m3=1,所以c2=m2-m3=m6,所以e2=13,所以e=33.故选B.栏目导引知能训练轻松闯关名师讲坛素养提升典例剖析考点突破教材回顾夯实基础第八章平面解析几何4.(选修21P42练习T3改编)已知F1,F2是椭圆x24+y23=1的两个焦点,过点F2作x轴的垂线交椭圆于A,B两点,则△F1AB的周长为________.8解析:由已知可得△F1AB的周长为|AF1|+|AF2|+|BF1|+|BF2|=4a=8.栏目导引知能训练轻松闯关名师讲坛素养提升典例剖析考点突破教材回顾夯实基础第八章平面解析几何5.(2016·常州调研)若方程x25-k+y2k-3=1表示椭圆,则k的取值范围是__________________.解析:由已知得5-k0,k-30,5-k≠k-3,解得3k5且k≠4.(3,4)∪(4,5)栏目导引知能训练轻松闯关名师讲坛素养提升典例剖析考点突破教材回顾夯实基础第八章平面解析几何考点一椭圆的定义及标准方程(1)(2016·奉贤调研)设椭圆x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1,F2,上顶点为B,若|BF2|=|F1F2|=2,则该椭圆的方程为()A.x24+y23=1B.x23+y2=1C.x22+y2=1D.x24+y2=1A栏目导引知能训练轻松闯关名师讲坛素养提升典例剖析考点突破教材回顾夯实基础第八章平面解析几何(2)(2016·徐州模拟)已知F1、F2是椭圆C:x2a2+y2b2=1(a>b>0)的两个焦点,P为椭圆C上的一点,且PF1⊥PF2,若△PF1F2的面积为9,则b=________.3[解析](1)由|BF2|=|F1F2|=2,得a=2,2c=2,即c=1,所以b2=a2-c2=4-1=3,所以该椭圆方程为x24+y23=1.栏目导引知能训练轻松闯关名师讲坛素养提升典例剖析考点突破教材回顾夯实基础第八章平面解析几何(2)设|PF1|=r1,|PF2|=r2,则r1+r2=2a,r21+r22=4c2,所以2r1r2=(r1+r2)2-(r21+r22)=4a2-4c2=4b2,所以S△PF1F2=12r1r2=b2=9,所以b=3.栏目导引知能训练轻松闯关名师讲坛素养提升典例剖析考点突破教材回顾夯实基础第八章平面解析几何本例(2)中增加条件“△PF1F2的周长为18”,其他条件不变,求该椭圆的方程.解:由原题得b2=a2-c2=9,又2a+2c=18,所以a-c=1,解得a=5,故椭圆的方程为x225+y29=1.栏目导引知能训练轻松闯关名师讲坛素养提升典例剖析考点突破教材回顾夯实基础第八章平面解析几何用待定系数法求椭圆标准方程的四个步骤(1)作判断:根据条件判断椭圆的焦点在x轴上,还是在y轴上,还是两个坐标轴都有可能.(2)设方程:根据上述判断设出方程.(3)找关系:根据已知条件,建立关于a,b,c的方程组.(4)得方程:解方程组,将解代入所设方程,即为所求.栏目导引知能训练轻松闯关名师讲坛素养提升典例剖析考点突破教材回顾夯实基础第八章平面解析几何1.(1)已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点P1(6,1),P2(-3,-2),则该椭圆的方程为____________.(2)(2016·岳阳模拟)在平面直角坐标系xOy中,椭圆C的中心为坐标原点,F1、F2为它的两个焦点,离心率为22,过F1的直线l交椭圆C于A,B两点,且△ABF2的周长为16,那么椭圆C的标准方程为_________________________.x29+y23=1x216+y28=1或x28+y216=1栏目导引知能训练轻松闯关名师讲坛素养提升典例剖析考点突破教材回顾夯实基础第八章平面解析几何解析:(1)设椭圆方程为mx2+ny2=1(m0,n0,且m≠n).因为椭圆经过P1,P2两点,所以P1,P2点坐标适合椭圆方程,则6m+n=1,①3m+2n=1,②①②两式联立,解得m=19,n=13.所以所求椭圆方程为x29+y23=1.栏目导引知能训练轻松闯关名师讲坛素养提升典例剖析考点突破教材回顾夯实基础第八章平面解析几何(2)由椭圆的定义及△ABF2的周长知4a=16,则a=4,又ca=22,所以c=22a=22,所以b2=a2-c2=16-8=8.当焦点在x轴上时,椭圆C的方程为x216+y28=1;当焦点在y轴上时,椭圆C的方程为y216+x28=1.综上可知,椭圆C的方程为x216+y28=1或x28+y216=1.栏目导引知能训练轻松闯关名师讲坛素养提升典例剖析考点突破教材回顾夯实基础第八章平面解析几何考点二椭圆的几何性质(高频考点)椭圆的几何性质是高考的热点,高考中多以小题出现,试题难度一般较大,高考对椭圆几何性质的考查主要有以下四个命题角度:(1)由椭圆的方程研究其性质;(2)利用椭圆性质求椭圆方程;(3)由椭圆的性质求参数的值或范围;(4)求离心率的值或范围.栏目导引知能训练轻松闯关名师讲坛素养提升典例剖析考点突破教材回顾夯实基础第八章平面解析几何(1)已知椭圆x2a2+y2b2=1(ab0)的一个焦点是圆x2+y2-6x+8=0的圆心,且短轴长为8,则椭圆的左顶点为()A.(-3,0)B.(-4,0)C.(-10,0)D.(-5,0)D栏目导引知能训练轻松闯关名师讲坛素养提升典例剖析考点突破教材回顾夯实基础第八章平面解析几何(2)(2015·高考福建卷)已知椭圆E:x2a2+y2b2=1(a>b>0)的右焦点为F,短轴的一个端点为M,直线l:3x-4y=0交椭圆E于A,B两点.若|AF|+|BF|=4,点M到直线l的距离不小于45,则椭圆E的离心率的取值范围是()A.(0,32]B.(0,34]C.[32,1)D.[34,1)A栏目导引知能训练轻松闯关名师讲坛素养提升典例剖析考点突破教材回顾夯实基础第八章平面解析几何[解析](1)因为圆的标准方程为(x-3)2+y2=1,所以圆心坐标为(3,0),所以c=3.又b=4,所以a=b2+c2=5.因为椭圆的焦点在x轴上,所以椭圆的左顶点为(-5,0).(2)根据椭圆的对称性及椭圆的定义可得A,B两点到椭圆左、右焦点的距离为4a=2(|AF|+|BF|)=8,所以a=2.又d=|3×0-4×b|32+(-4)2≥45,所以1≤b2,所以e=ca=1-b2a2=1-b24.因为1≤b2,所以0e≤32.栏目导引知能训练轻松闯关名师讲坛素养提升典例剖析考点突破教材回顾夯实基础第八章平面解析几何(1)求椭圆离心率的方法①直接求出a,c的值,利用离心率公式直接求解.②列出含有a,b,c的齐次方程(或不等式),借助于b2=a2-c2消去b,转化为含有e的方程(或不等式)求解.(2)利用椭圆几何性质的技巧求解与椭圆几何性质有关的问题时,要结合图形进行分析,当涉及顶点、焦点、长轴、短轴等椭圆的基本量时,要理清它们之间的内在联系.栏目导引知能训练轻松闯关名师讲坛素养提升典例剖析考点突破教材回顾夯实基础第八章平面解析几何2.(1)(2016·兰州模拟)已知椭圆C:x2a2+y2b2=1(ab0)的左、右焦点分别为F1、F2,右顶点为A,上顶点为B,若椭圆C的中心到直线AB的距离为66|F1F2|,则椭圆C的离心率e=()A.22B.32C.23D.33A栏目导引知能训练轻松闯关名师讲坛素养提升典例剖析考点突破教材回顾夯实基础第八章平面解析几何(2)(2016·合肥质检)如图,焦点在x轴上的椭圆x24+y2b2=1的离心率e=12,F,A分别是椭圆的一个焦点和顶点,P是椭圆上任意一点,则PF→·PA→的最大值为________.4栏目导引知能训练轻松闯关名师讲坛素养提升典例剖析考点突破教材回顾夯实基础第八章平面解析几何解析:(1)设椭圆C的焦距为2c(ca),由于直线AB的方程为bx+ay-ab=0,所以aba2+b2=63c,又b2=a2-c2,所以3a4-7a2c2+2c4=0,解得a2=2c2或3a2=c2(舍),所以e=22,故选A.栏目导引知能训练轻松闯关名师讲坛素养提升典例剖析
本文标题:高考数学第八章第5讲
链接地址:https://www.777doc.com/doc-7913798 .html