您好,欢迎访问三七文档
1EvaluationWarning:ThedocumentwascreatedwithSpire.Docfor.NET.23.1图形的旋转第1课时旋转及其性质教学内容1.什么叫旋转?旋转中心?旋转角?2.旋转的性质教学目标了解旋转及旋转中心和旋转角的概念,了解旋转对应点的概念及其应用它们解决一些实际问题.理解对应点到旋转中心的距离相等;理解对应点与旋转中心所连线段的夹角等于旋转角;理解旋转前、后的图形全等.掌握以上三个图形的旋转的基本性质的运用.教学重难点1.重点:旋转及对应点的有关概念及其应用以及旋转的基本性质及其应用.2.难点:运用操作实验几何得出图形的旋转的三条基本性质.教学过程一、教师导学(学生活动)请同学们完成下面各题.1.将如图所示的四边形ABCD平移,使点B的对应点为点D,作出平移后的图形.第1题图第2题图2.如图,已知△ABC和直线l,请你画出△ABC关于l的对称图形△A'B'C'.3.圆是轴对称图形吗?等腰三角形呢?你还能指出其它的吗?(口述)老师点评并总结:(1)平移的有关概念及性质.2(2)如何画一个图形关于一条直线(对称轴)的对称图形并口述它的一些性质.(3)什么叫轴对称图形?二、合作与探究我们前面已经复习平移等有关内容,生活中是否还有其它运动变化呢?回答是肯定的,下面我们就来研究.1.请同学们看讲台上的大时钟,什么在不停地转动?绕什么点旋转呢?从现在到下课时针转了多少度?分针转了多少度?秒针转了多少度?(口答)老师点评:时针、分针、秒针在不停地转动,它们都绕着时钟的中心.如果从现在到下课时针转了度,分针转了度,秒针转了度.2.再看我自制的好像风车风轮的玩具,它可以不停地转动.如何转到新的位置?(老师点评略)3.第1、2两题有什么共同特点呢?共同特点是如果我们把时针、风车风轮当成一个图形,那么这些图形都可以绕着某一固定点转动一定的角度.像这样,把一个图形绕着某一点O转动一个角度的图形变换叫做旋转,点O叫做旋转中心,转动的角叫做旋转角.如果图形上的点P经过旋转变为点P',那么这两个点叫做这个旋转的对应点.请看我手里拿着的硬纸板,我在硬纸板上挖下一个三角形的洞,再挖一个点O作为旋转中心,把挖好的硬纸板放在黑板上,先在黑板上描出这个挖掉的三角形图案(△ABC),然后围绕旋转中心O转动硬纸板,在黑板上再描出这个挖掉的三角形(△A'B'C'),移去硬纸板.(分组讨论)根据图回答下面问题(一组推荐一人上台说明)1.线段OA与OA',OB与OB',OC与OC'有什么关系?2.∠AOA',∠BOB',∠COC'有什么关系?3.△ABC与△A'B'C'形状和大小有什么关系?老师点评:1.OA=OA',OB=OB',OC=OC',也就是对应点到旋转中心相等.2.∠AOA'=∠BOB'=∠COC',我们把这三个相等的角,即对应点与旋转中心所连线段的夹角称为旋转角.3.△ABC和△A'B'C'形状相同和大小相等,即全等.综合以上的实验操作和刚才作的图,得出(1)对应点到旋转中心的距离相等;3(2)对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前、后的图形全等.【例】如图,四边形ABCD是边长为1的正方形,且DE=41,△ABF是△ADE的旋转图形.(1)旋转中心是哪一点?(2)旋转了多少度?(3)AF的长度是多少?(4)如果连接EF,那么△AEF是怎样的三角形?分析:由△ABF是△ADE的旋转图形,可直接得出旋转中心和旋转角,要求AF的长度,根据旋转前后的对应线段相等,只要求AE的长度,由勾股定理很容易得到.△ABF与△ADE是完全重合的,所以它是直角三角形.解:(1)旋转中心是A点.(2)∵△ABF是由△ADE旋转而成的;∴B是D的对应点;∴∠DAB=90°就是旋转角.(4)∵∠EAF=90°(与旋转角相等)且AF=AE;∴△EAF是等腰直角三角形.三、巩固练习教材练习题四、能力展示如图,K是正方形ABCD内一点,以AK为一边作正方形AKLM,使L、M在AK的同旁,连接BK和DM,试用旋转的思想说明线段BK与DM的关系.五、总结提升(学生总结,老师点评)本节课应掌握:1.对应点到旋转中心的距离相等;42.对应点与旋转中心所连线段的夹角等于旋转角;3.旋转前、后的图形全等及其它们的应用.第2课时旋转作图及变换教学内容选择不同的旋转中心或不同的旋转角,设计出不同的美丽的图案.教学目标理解选择不同的旋转中心、不同的旋转角度,会出现不同的效果,掌握根据需要用旋转的知识设计出美丽的图案.复习图形旋转的基本性质,着重强调旋转中心和旋转角,然后应用已学的知识作图,设计出美丽的图案.教学重难点重点:用旋转的有关知识画图.难点:根据需要设计美丽图案.教学过程一、教师导学1.(学生活动)老师口问,学生口答.(1)各对应点到旋转中心的距离有何关系呢?(2)各对应点与旋转中心所连线段的夹角与旋转角有何关系?(3)两个图形是旋转前后的图形,它们全等吗?2.请同学独立完成下面的作图题.如图,△AOB绕O点旋转后,G点是B点的对应点,作出△AOB旋转后的三角形.(老师点评)分析:要作出△AOB旋转后的三角形,应找出三方面:第一,旋转中心:O;第二,旋转角:∠BOG;第三,A点旋转后的对应点:A'.二、合作与探究从上面的作图题中,我们知道,作图应满足三要素:旋转中心、旋转角、对应点,而旋转中心、旋转角固定下来,对应点就自然而然地固定下来.因此,下面就选择不同的旋转中心、不同的旋转角来进行研究.1.旋转中心不变,改变旋转角画出四边形ABCD以O点为中心,旋转角分别为30°、60°的旋转图形.52.旋转角不变,改变旋转中心画出四边形ABCD分别为O1、O2为中心,旋转角都为30°的旋转图形.因此,从以上的画图中,我们可以得到旋转中心不变,改变旋转角与旋转角不变,改变旋转中心会产生不同的效果,所以,我们可以经过旋转设计出美丽的图案.【例1】如图是菊花一叶和中心与圆圈,现以O为旋转中心画出分别旋转45°、90°、135°、180°、225°、270°、315°的菊花图案.分析:只要以O为旋转中心、旋转角以上面为变化,旋转长度为菊花的最长OA,按菊花叶的形状画出即可.解:(1)连接OA.(2)以O点为圆心,OA长为半径旋转45°,得A.(3)依此类推画出旋转角分别为90°、135°、180°、225°、270°、315°的A、A、A、A、A、A.(4)按菊花一叶图案画出各菊花一叶.那么所画的图案就是绕O点旋转后的图形.6【例2】(学生活动)如图,如果上面的菊花一叶,绕下面的点O'为旋转中心,请同学画出图案,它还是原来的菊花吗?老师点评:显然,画出后的图案不是菊花,而是另外的一种花了.三、巩固练习教材练习题.四、能力展示【例3】如图,如何作出该图案绕O点按逆时针旋转90°的图形.分析:该备案是一个比较复杂的图案,是作出几个复合图形组成的图案,因此,要先画出图中的关键点,这些关键点往往是图案里线的端点、角的顶点、圆的圆心等,然后再根据旋转的特征,作出这些关键点的对应点,最后再按原图案作出旋转后的图案.解:(1)连接OA,过O点沿OA逆时针作∠AOA'=90°,在射线OA'上截取OA'=OA;(2)同样的方法分别作出B、C、D、E、F、G、H的对应点B'、C'、D'、E'、F'、G'、H';(3)作出对应线段A'B'、B'C'、C'D'、D'E'、E'F'、F'A'、A'G'、G'D'、D'H'、H'A';(4)所作出的图案就是所求的图案.五、归纳小结(学生归纳,老师点评)本节课应掌握:1.选择不同的旋转中心、不同的旋转角,设计出美丽的图案;2.作出几个复合图形组成的图案旋转后的图案,要先求出图中的关键点──线的端点、角的顶点、圆的圆心等.
本文标题:2018-2019学年九年级数学上册 第二十三章 旋转 23.1 图形的旋转教案 (新版)新人教版
链接地址:https://www.777doc.com/doc-7930282 .html