您好,欢迎访问三七文档
1EvaluationWarning:ThedocumentwascreatedwithSpire.Docfor.NET.24.1.3弧、弦、圆心角(总分:38分时间:40分钟)一、选择题(本题包括4小题,每小题只有1个选项符合题意)1.下列图形中表示的角是圆心角的是()2.在同圆中,圆心角∠AOB=2∠COD,则两条弧与的关系是()A.=2B.2C.2D.不能确定3.已知AB与A′B′分别是☉O与☉O′的两条弦,AB=A′B′,那么∠AOB与∠A′O′B′的大小关系是()A.∠AOB=∠A′O′B′B.∠AOB∠A′O′B′C.∠AOB∠A′O′B′D.不能确定4.如图,D,E分别是☉O的半径OA,OB上的点,CD⊥OA,CE⊥OB,CD=CE,则与的关系是()A.=B.C.D.不能确定二、填空题(本题包括3小题)5.(2分)一条弦把圆分成1∶3两部分,则弦所对的圆心角为____.6.(2分)如图,AB是☉O的直径,==,∠COD=40°,则∠AOE的度数为____.7.(2分)如图,=,若AB=3,则CD=____.2三、解答题(本题包括4小题)8.如图所示,AB是☉O的弦,C,D为弦AB上两点,且OC=OD,延长OC,OD,分别交☉O于点E,F.试证:=.9.如图,AB,CD,EF都是☉O的直径,且∠1=∠2=∠3,求证:AC=EB=DF.10.如图,已知OA,OB是☉O的半径,C为的中点,M,N分别是OA,OB的中点,求证:MC=NC.11.如图,∠AOB=90°,C,D是的三等分点,AB分别交OC,OD于点E,F.试找出图中相等的线段(半径除外).(1)错因:.(2)纠错:____________________________________________________________.324.1.3弧、弦、圆心角参考答案一、选择题1.【答案】A【解析】根据圆心角的定义:顶点在圆心的角是圆心角可知,B,C,D项图形中的顶点都不在圆心上,所以它们都不是圆心角.故选A.2.【答案】A【解析】在同圆中,相等的圆心角所对的弧相等,可得选项A正确.3.【答案】D【解析】由弦相等推弦所对的圆心角相等,必须保证在同圆或等圆中.此题没有限制,所以不能确定∠AOB和∠A′O′B′的大小关系.点睛:本题主要考查了弦与其所对的圆心角的关系,本题的易错点就是认为“相等的弦所对的圆心角才相等”,从而选择A,而忽略了这一命题成立的前提是“在同圆和等圆中”.4.【答案】A【解析】本题考查圆心角、弧和HL定理的知识,解题的关键是熟练地掌握相关的性质和定理;先根据HL定理证明Rt△COD≌Rt△COE,得∠COD=∠COE;再根据圆心角与弧之间的关系由∠COD=∠COE得出弧AC和弧BC的关系即可.∵CD⊥OA,CE⊥OB,∴∠CDO=∠CEO=90°,∵CD=CE,CO=CO,∴△COD≌△COE,∴∠COD=∠COE,∴=.二、填空题5.(2分)【答案】90°【解析】∵一条弦把圆分成1:3两部分,∴劣弧的度数=360°÷4=90°,∴弦所对的圆心角为90°.考点:圆心角、弧和所对弦的关系.6.(2分)【答案】60°【解析】在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等;根据,==,可得到∠COB=∠COD=∠DOE=40°;根据∠COB+∠COD+∠DOE+∠AOE=180°,即可得到∠AOE的度数.∵==,∴∠BOC=∠DOE=∠COD=40°,∴∠AOE=180°-3×40°=60°.7.(2分)【答案】3【解析】根据已知条件,=,可求出=,然后根据相等的弧所对的弦想等可求出CD的长.∵=,∴-=-,即=,∴CD=AB=3.三、解答题8.【答案】证明见解析【解析】根据等腰三角形的性质由OC=OD得∠OCD=∠ODC,由OA=OB得∠A=∠B,再根据三角形外角性质得4∠OCD=∠A+∠AOC,∠ODC=∠B+∠BOD,利用等量代换得到∠AOC=∠BOD,然后根据在同圆和等圆中,相等的圆心角所对的弧相等即可得到结论.证明:∵OC=OD,∴∠OCD=∠ODC.∵AO=OB,∴∠A=∠B.∴∠OCD-∠A=∠ODC-∠B,即∠AOC=∠BOD,即∠AOE=∠BOF.∴=.点睛:本题考查了圆心角、弧、弦的关系:在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦也相等.9.【答案】证明见解析【解析】根据三个圆心角相等得到其对顶角相等,然后根据相等的圆心角所对的弧相等,所对的弦也相等即可证得结论.在☉O中,∠1=∠2=∠3,又∵AB,CD,EF都是☉O的直径,∴∠FOD=∠AOC=∠BOE.∴==,∴AC=EB=DF.10.【答案】证明见解析【解析】连接OC,根据C是的中点,易得到,由同圆中等弧对的圆心角相等可得∠AOC=∠BOC;由OA=OB,M,N分别为OA,OB的中点可得OM=ON,由边角边定理可以判断△MOC≌△NOC,从而可得到MC=NC.证明:连接OC.∵C为的中点,∴=,∴∠MOC=∠NOC.又∵M,N分别是OA,OB的中点,∴OM=OA,ON=OB,∴OM=ON.又∵OC=OC,∴△OMC≌△ONC,∴MC=NC.点睛:本题考查三角形全等的判定方法,弧与圆心角之间的关系,解题的关键是灵活运用三角形全等的判定方法及在等圆或同圆中相等的弧所对的圆心角相等这些定理;511.【答案】(1)AE,BF不是圆的弦,不能直接利用等弧对等弦(2)10【解析】先根据OA⊥OB可知∠AOB=90°,再由C,D为弧AB的三等分点可求出∠AOC的度数;由三角形内角和定理求出∠OCD的度数,根据三角形外角的性质得出∠OEF及∠OFE的度数,得OE=OF,CE=DF;根据三角形内角和定理即可得出∠AEO的度数;连接AC,BD,可得出CD=AE=BF,可得EF∥CD,所以EFCD.即可得解.解:∵在⊙O中,半径OA⊥OB,C、D为弧AB的三等分点,∴∠AOC=∠AOB=×90°=30°∵OA=OB,∴∠OAB=∠OBA=45°,∵∠AOC=∠BOD=30°,∴∠OEF=∠OAB+∠AOC=45°+30°=75°,同理∠OFE=75°,∴OE=OF,∴CE=DF;连接AC,BD,∵OC=OD,OE=OF,∴EF∥CD,∴EF<CD,∵C,D是弧AB的三等分点,∴AC=CD=BD,∵∠AOD,∴△ACO≌△DCO.∴∠ACO=∠OCD.∵∠OEF=∠OAE+∠AOE=45°+30°=75°,∠OCD==75°,∴∠OEF=∠OCD,∴CD∥AB,∴∠AEC=∠OCD,∴∠ACO=∠AEC.故AC=AE,同理,BF=BD.又∵AC=CD=BD∴CD=AE=BF.故答案为:OE=OF,CE=DF,CD=AE=BF.点睛:本题考查的是圆的综合题,涉及到等腰三角形的性质、全等三角形的判定定理等知识.解答本题的关键是求出△ACO≌△DCO,根据全等三角形对应边相等的性质得解.在同圆或等圆中,相等的圆心角或相等的弧所对的弦相等,不要认为所对的线段相等.
本文标题:2018-2019学年九年级数学上册 第二十四章 圆 24.1 圆的有关性质 24.1.3 弧、弦、
链接地址:https://www.777doc.com/doc-7930395 .html