您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 2018中考数学复习 第5课时 分式测试
1第一单元数与式第五课时分式1.(2017北京)若代数式xx-4有意义,则实数x的取值范围是()A.x=0B.x=4C.x≠0D.x≠42.(2017淄博)若分式|x|-1x+1的值为零,则x的值是()A.1B.-1C.±1D.23.(2017山西)化简4xx2-4-xx-2的结果是()A.-x2+2xB.-x2+6xC.-xx+2D.xx-24.(2017乐山)若a2-ab=0(b≠0),则aa+b=()A.0B.12C.0或12D.1或25.(2017桂林)分式12a2b与1ab2的最简公分母是______.6.(2017青海)计算:2x2-1÷4+2x(x-1)(x+2)=______.7.(6分)先化简,再求值:x2+2x+1x+1+x2-1x-1,其中x=-2.8.(6分)(2017福建)先化简,再求值:(1-1a)·aa2-1,其中a=2-1.29.(6分)(2017德州)先化简,再求值:a2-4a+4a2-4÷a-2a2+2a-3,其中a=72.10.(6分)(2017深圳)先化简,再求值:(2xx-2+xx+2)÷xx2-4,其中x=-1.11.(6分)(2017毕节)先化简,再求值:(x2-2x+1x2-x+x2-4x2+2x)÷1x,且x为满足-3x2的整数.12.(6分)(2017哈尔滨)先化简,再求代数式1x-1÷x+2x2-2x+1-xx+2的值,其中x=4sin60°-2.13.(6分)(2017襄阳)先化简,再求值:(1x+y+1x-y)÷(1xy+y2),其中x=5+2,y=5-2.14.(6分)(2017张家界)先化简(1-1x-1)÷x2-4x+4x2-1,再从不等式2x-16的正整数解中选一个适当的数代入求值.分式化简求值题巩固集训1.(6分)(2017攀枝花)先化简,再求值:(1-2x+1)÷x2-1x2+x,其中x=2.2.(6分)先化简,再求值:(x2x-2+42-x)÷x2+4x+4x,其中x是0,1,2这三个数中合适的数.3.(6分)(2017株洲)先化简,再求值:(x-y2x)·yx+y-y,其中x=2,y=3.34.(6分)(2017烟台)先化简,再求值:(x-2xy-y2x)÷x2-y2x2+xy,其中x=2,y=2-1.5.(6分)(2017麓山国际实验学校二模)化简:2xx+1-2x+4x2-1÷x+2x2-2x+1,然后在不等式x≤2的非负整数解中选择一个适当的数代入求值.6.(6分)(2017西宁)先化简,再求值:(n2n-m-m-n)÷m2,其中m-n=2.7.(6分)(2017长沙中考模拟卷二)先化简,再求值:a2+aa2-2a+1÷(2a-1-1a),其中a是方程2x2+x-3=0的解.8.(6分)(2017鄂州)先化简,再求值:(x-1+3-3xx+1)÷x2-xx+1,其中x的值从不等式组2-x≤32x-41的整数解中选取.答案1.D2.A3.C4.C【解析】对于等式a2-ab=0(b≠0),当a=0时,等式仍然成立,此时aa+b=0;当a≠0时,对于等式两边同时除以a2后得到1-ba=0,即ba=1,则aa+b=1a+ba=11+ba=11+1=12,综上,aa+b=0或12.5.2a2b26.1x+147.解:原式=(x+1)2x+1+(x+1)(x-1)x-1=x+1+x+1=2x+2,当x=-2时,原式=2×(-2)+2=-2.8.解:原式=a-1a·a(a+1)(a-1)=1a+1,当a=2-1时,原式=12-1+1=22.9.解:原式=(a-2)2(a-2)(a+2)·a(a+2)a-2-3=a-3,当a=72时,原式=12.10.解:原式=2x(x+2)+x(x-2)(x+2)(x-2)·(x+2)(x-2)x=3x+2,当x=-1时,原式=3×(-1)+2=-1.11.解:原式=[(x-1)2x(x-1)+(x-2)(x+2)x(x+2)]·x5=x-1+x-2=2x-3,∵x为满足-3<x<2的整数,∴x的值可以取-2,-1,0,1,又∵当x取-2,0,1时,分式无意义,∴x只能取-1,当x=-1时,原式=2×(-1)-3=-5.12.解:原式=1x-1×(x-1)2x+2-xx+2=x-1-xx+2=-1x+2,当x=4sin60°-2=4×32-2=23-2时,原式=-123-2+2=-36.13.解:原式=x-y+x+y(x+y)(x-y)÷1y(x+y)=2x(x+y)(x-y)×y(x+y)=2xyx-y,当x=5+2,y=5-2时,原式=2×(5+2)(5-2)5+2-(5-2)6=2×(5-4)4=12.14.解:原式=(x-1x-1-1x-1)÷(x-2)2(x+1)(x-1)=x-2x-1·(x+1)(x-1)(x-2)2=x+1x-2,解不等式2x-1<6得,x<72,则不等式的正整数解为1,2,3,∵当x=1或2时,分式无意义,∴x的值只能取3,当x=3时,原式=3+13-2=4.分式化简求值题巩固集训1.解:原式=x+1-2x+1·x(x+1)(x+1)(x-1)=x-1x+1·x(x+1)(x+1)(x-1)=xx+1,7当x=2时,原式=22+1=23.2.解:原式=x2-4x-2÷(x+2)2x=(x+2)(x-2)x-2·x(x+2)2=xx+2,若分式有意义,则x不能为2,0,-2,∴x取值为1,当x=1时,原式=11+2=13.3.解:原式=x2-y2x·yx+y-y=(x+y)(x-y)x·yx+y-y=y(x-y)x-y=-y2x,当x=2,y=3时,原式=-(3)22=-32.4.解:原式=x2-2xy+y2x÷(x+y)(x-y)x(x+y)8=(x-y)2x÷xx-y=x-y,当x=2,y=2-1时,原式=2-(2-1)=1.5.解:原式=2xx+1-2(x+2)(x+1)(x-1)·(x-1)2x+2=2xx+1-2(x-1)x+1=2x+1,∵当x取1时,分式无意义,又∵x为不等式x≤2的非负整数解,∴x可取的值为0和2,当x=0时,原式=20+1=2.当x=2时,原式=22+1=23.(选取其中任一种情况即可得分)6.解:原式=(n2n-m-n2-m2n-m)÷m2=1n-m,当m-n=2时,原式=1-2=-22.97.解:原式=a(a+1)(a-1)2÷2a-(a-1)a(a-1)=a(a+1)(a-1)2×a(a-1)a+1=a2a-1,∴a是方程2x2+x-3=0的解,∴2a2+a-3=(2a+3)(a-1)=0,解得a1=-32,a2=1,又∵当a=1时,分式无意义,∴a取值为-32,当a=-32时,原式=(-32)2-32-1=94-52=-910.8.解:原式=(x-1)(x+1)+3-3xx+1÷x(x-1)x+1=x2-3x+2x+1·x+1x(x-1)=(x-1)(x-2)x+1·x+1x(x-1)=x-2x,10解不等式组2-x≤32x-41,得-1≤x52,∴其整数解为-1,0,1,2,要使分式有意义,则x不等于-1,0,1,∴x只能取2,当x=2时,原式=2-22=0.
本文标题:2018中考数学复习 第5课时 分式测试
链接地址:https://www.777doc.com/doc-7935488 .html