您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 新课标版数学(理)高三总复习:题组层级快练22
题组层级快练(二十二)1.cos2015°=()A.sin35°B.-sin35°C.sin55°D.-sin55°答案D解析cos2015°=cos(5×360°+215°)=cos215°=cos(270°-55°)=-sin55°.2.tan240°+sin(-420°)的值为()A.-332B.-32C.32D.332答案C3.已知f(cosx)=cos2x,则f(sin15°)的值等于()A.12B.-12C.32D.-32答案D解析f(sin15°)=f(cos75°)=cos150°=-32.故选D.4.已知A=sinkπ+αsinα+coskπ+αcosα(k∈Z),则A的值构成的集合是()A.{1,-1,2,-2}B.{-1,1}C.{2,-2}D.{1,-1,0,2,-2}答案C解析当k为偶数时,A=sinαsinα+cosαcosα=2;当k为奇数时,A=-sinαsinα-cosαcosα=-2.5.(tanx+1tanx)cos2x=()A.tanxB.sinxC.cosxD.1tanx答案D解析(tanx+1tanx)cos2x=sin2x+cos2xsinxcosx·cos2x=cosxsinx=1tanx.6.若tan(5π+α)=m,则sinα-3π+cosπ-αsin-α-cosπ+α的值为()A.m+1m-1B.m-1m+1C.-1D.1答案A解析由tan(5π+α)=m,得tanα=m.原式=-sinα-cosα-sinα+cosα=sinα+cosαsinα-cosα=m+1m-1,∴选A.7.若A为△ABC的内角,且sin2A=-35,则cos(A+π4)等于()A.255B.-255C.55D.-55答案B解析cos2(A+π4)=[22(cosA-sinA)]2=12(1-sin2A)=45.又cosA0,sinA0,∴cosA-sinA0.∴cos(A+π4)=-255.8.若3sinα+cosα=0,则1cos2α+sin2α的值为()A.103B.53C.23D.-2答案A解析由3sinα=-cosα,得tanα=-13.1cos2α+sin2α=cos2α+sin2αcos2α+2sinαcosα=1+tan2α1+2tanα=1+191-23=103.9.若tanθ+1tanθ=4,则sin2θ=()A.15B.14C.13D.12答案D解析∵tanθ+1tanθ=4,∴sinθcosθ+cosθsinθ=4.∴sin2θ+cos2θcosθsinθ=4,即2sin2θ=4.∴sin2θ=12.10.(2015·河北唐山模拟)已知sinα+2cosα=3,则tanα=()A.22B.2C.-22D.-2答案A解析∵sinα+2cosα=3,∴(sinα+2cosα)2=3.∴sin2α+22sinαcosα+2cos2α=3.∴sin2α+22sinαcosα+2cos2αsin2α+cos2α=3.∴tan2α+22tanα+2tan2α+1=3.∴2tan2α-22tanα+1=0.∴tanα=22,故选A.11.已知tanθ=2,则sin2θ+sinθcosθ-2cos2θ=()A.-43B.54C.-34D.45答案D解析sin2θ+sinθcosθ-2cos2θ=sin2θ+sinθcosθ-2cos2θsin2θ+cos2θ=tan2θ+tanθ-2tan2θ+1=4+2-24+1=45.12.已知2tanα·sinα=3,-π2α0,则cos(α-π6)的值是()A.0B.32C.1D.12答案A解析依题意得2sin2αcosα=3,即2cos2α+3cosα-2=0,解得cosα=12或cosα=-2(舍去).又-π2α0,因此α=-π3,故cos(α-π6)=cos(-π3-π6)=cosπ2=0.13.已知sinθ=55,则sin4θ-cos4θ的值为________.答案-35解析由sinθ=55,可得cos2θ=1-sin2θ=45,所以sin4θ-cos4θ=(sin2θ+cos2θ)(sin2θ-cos2θ)=sin2θ-cos2θ=15-45=-35.14.若α∈(0,π2),且sin2α+cos2α=14,则tanα的值等于________.答案3解析由二倍角公式可得sin2α+1-2sin2α=14,即-sin2α=-34,sin2α=34.又因为α∈(0,π2),所以sinα=32,即α=π3,所以tanα=tanπ3=3.15.化简sin6α+cos6α+3sin2αcos2α的结果是________.答案1解析sin6α+cos6α+3sin2αcos2α=(sin2α+cos2α)(sin4α-sin2αcos2α+cos4α)+3sin2αcos2α=sin4α+2sin2αcos2α+cos4α=(sin2α+cos2α)2=1.16.若tanα+1tanα=3,则sinαcosα=________,tan2α+1tan2α=________.答案13,7解析∵tanα+1tanα=3,∴sinαcosα+cosαsinα=3.即sin2α+cos2αsinαcosα=3.∴sinαcosα=13.又tan2α+1tan2α=(tanα+1tanα)2-2tanα1tanα=9-2=7.17.(2015·浙江嘉兴联考)已知α为钝角,sin(π4+α)=34,则sin(π4-α)=________,cos(α-π4)=________.答案-74,34解析sin(π4-α)=cos[π2-(π4-α)]=cos(π4+α),∵α为钝角,∴34ππ4+α54π.∴cos(π4+α)0.∴cos(π4+α)=-1-342=-74.cos(α-π4)=sin[π2+(α-π4)]=sin(π4+α)=34.18.已知0απ2,若cosα-sinα=-55,试求2sinαcosα-cosα+11-tanα的值.答案55-95解析∵cosα-sinα=-55,∴1-2sinαcosα=15.∴2sinαcosα=45.∴(sinα+cosα)2=1+2sinαcosα=1+45=95.∵0απ2,∴sinα+cosα=355.与cosα-sinα=-55联立,解得cosα=55,sinα=255.∴tanα=2.∴2sinαcosα-cosα+11-tanα=45-55+11-2=55-95.19.已知-π2α0,且函数f(α)=cos(3π2+α)-sinα·1+cosα1-cosα-1.(1)化简f(α);(2)若f(α)=15,求sinα·cosα和sinα-cosα的值.答案(1)f(α)=sinα+cosα(2)-1225,-75解析(1)f(α)=sinα-sinα·1+cosα21-cos2α-1=sinα+sinα·1+cosαsinα-1=sinα+cosα.(2)方法一:由f(α)=sinα+cosα=15,平方可得sin2α+2sinα·cosα+cos2α=125,即2sinα·cosα=-2425.∴sinα·cosα=-1225.∵(sinα-cosα)2=1-2sinα·cosα=4925,又-π2α0,∴sinα0,cosα0,∴sinα-cosα0,∴sinα-cosα=-75.方法二:联立方程sinα+cosα=15,sin2α+cos2α=1,解得sinα=-35,cosα=45或sinα=45,cosα=-35.∵-π2α0,∴sinα=-35,cosα=45.∴sinα·cosα=-1225,sinα-cosα=-75.1.已知cosA+sinA=-713,A为第四象限角,则tanα等于()A.125B.512C.-125D.-512答案C解析∵cosA+sinA=-713,①∴(cosA+sinA)2=(-713)2,∴2cosA·sinA=-120169.∴(cosA-sinA)2=(cosA+sinA)2-4cosAsinA.∵A为第四象限角,∴cosA-sinA=1713.②∴联立①②,∴cosA=513,sinA=-1213.∴tanA=sinAcosA=-125,选C.2.已知sin(π4+α)=32,则sin(3π4-α)的值为________.答案32解析sin(3π4-α)=sin[π-(π4+α)]=sin(π4+α)=32.
本文标题:新课标版数学(理)高三总复习:题组层级快练22
链接地址:https://www.777doc.com/doc-7938376 .html