-1-第四章测评B(高考体验卷)(时间:90分钟满分:100分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知点M(a,b)在圆O:x2+y2=1外,则直线ax+by=1与圆O的位置关系是()A.相切B.相交C.相离D.不确定解析:∵点M(a,b)在圆x2+y2=1外,∴点M(a,b)到圆心(0,0)的距离要大于半径,即a2+b21,而圆心(0,0)到直线ax+by=1的距离为d=1,∴直线与圆相交.答案:B2.垂直于直线y=x+1且与圆x2+y2=1相切于第Ⅰ象限的直线方程是()A.x+y-=0B.x+y+1=0C.x+y-1=0D.x+y+=0解析:由于所求切线垂直于直线y=x+1,可设所求切线方程为x+y+m=0.由圆心到切线的距离等于半径得=1,解得m=±.又由于与圆相切于第Ⅰ象限,则m=-.答案:A3设P是圆(x-3)2+(y+1)2=4上的动点,Q是直线x=-3上的动点,则|PQ|的最小值为()A.6B.4C.3D.2解析:∵由圆(x-3)2+(y+1)2=4知,圆心的坐标为(3,-1),半径r=2,∴圆心到直线x=-3的距离d=|3-(-3)|=6.∴|PQ|min=d-r=6-2=4,故选B.答案:B4已知过点P(2,2)的直线与圆(x-1)2+y2=5相切,且与直线ax-y+1=0垂直,则a=()-2-A.-B.1C.2D.解析:由题意知点P(2,2)在圆(x-1)2+y2=5上,设切线的斜率为k,则k·=-1,解得k=-,直线ax-y+1=0的斜率为a,其与切线垂直,所以-a=-1,解得a=2,故选C.答案:C5.已知直线l过圆x2+(y-3)2=4的圆心,且与直线x+y+1=0垂直,则l的方程是()A.x+y-2=0B.x-y+2=0C.x+y-3=0D.x-y+3=0解析:直线过圆心(0,3),与直线x+y+1=0垂直,故其斜率k=1.所以直线的方程为y-3=1×(x-0),即x-y+3=0.故选D.答案:D6已知圆x2+y2+2x-2y+a=0截直线x+y+2=0所得弦的长度为4,则实数a的值是()A.-2B.-4C.-6D.-8解析:圆的方程可化为(x+1)2+(y-1)2=2-a,因此圆心为(-1,1),半径r=.圆心到直线x+y+2=0的距离d=,又弦长为4,因此由勾股定理可得()2+=()2,解得a=-4.故选B.答案:B7.过点P(-,-1)的直线l与圆x2+y2=1有公共点,则直线l的倾斜角的取值范围是()A.B.C.D.解析:如图所示,直线l1,l2过点P分别与圆O相切于点A、点B.连接OP,OA,在Rt△OAP中,|OP|=2,|OA|=1,所以∠OPA=,同理∠OPB=.所以∠APB=.所以直线l1的倾斜角为,显然直线l2的倾斜角为0,所以直线l的倾斜角的取值范围是.故直线l的倾斜角范围为.答案:D8.已知圆C:(x-3)2+(y-4)2=1和两点A(-m,0),B(m,0)(m0).若圆C上存在点P,使得∠APB=90°,则m的最大值为()-3-A.7B.6C.5D.4解析:因为A(-m,0),B(m,0)(m0),所以使∠APB=90°的点P在以线段AB为直径的圆上,该圆的圆心为O(0,0),半径为m.而圆C的圆心为C(3,4),半径为1.由题意知点P在圆C上,故两圆有公共点.所以两圆的位置关系为外切、相交或内切,故m-1≤|CO|≤m+1,即m-1≤5≤m+1,解得4≤m≤6.所以m的最大值为6.故选B.答案:B9.过点(3,1)作圆(x-1)2+y2=1的两条切线,切点分别为A,B,则直线AB的方程为()A.2x+y-3=0B.2x-y-3=0C.4x-y-3=0D.4x+y-3=0解析:该切线方程为y=k(x-3)+1,即kx-y-3k+1=0,由圆心到直线距离为=1,得k=0或,切线方程分别与圆方程联立,求得切点坐标分别为(1,1),,故所求直线的方程为2x+y-3=0.故选A.答案:A10.过点(,0)引直线l与曲线y=相交于A,B两点,O为坐标原点,当△AOB的面积取最大值时,直线l的斜率等于()A.B.-C.±D.-解析:曲线y=的图象如图所示:若直线l与曲线相交于A,B两点,则直线l的斜率k0,设l:y=k(x-),则点O到l的距离d=.又S△AOB=|AB|·d=×2·d=,当且仅当d2=时,S△AOB取得最大值.所以,∴k2=,∴k=-.故选B.答案:B二、填空题(本大题共5小题,每小题5分,共25分.把答案填在题中的横线上)-4-11已知圆O:x2+y2=5,直线l:xcosθ+ysinθ=1.设圆O上到直线l的距离等于1的点的个数为k,则k=.解析:由题意圆心到该直线的距离为1,而圆半径为2,故圆上有4个点到该直线的距离为1.答案:412.若圆C经过坐标原点和点(4,0),且与直线y=1相切,则圆C的方程是.解析:圆心在直线x=2上,所以切点坐标为(2,1).设圆心坐标为(2,t),由题意,可得4+t2=(1-t)2,所以t=-,半径r2=.所以圆C的方程为(x-2)2+.答案:(x-2)2+13.过点(3,1)作圆(x-2)2+(y-2)2=4的弦,其中最短弦的长为.解析:如图,当AB所在直线与AC垂直时弦BD最短,AC=,CB=r=2,∴BA=,∴BD=2.答案:214.平面直角坐标系xOy中,直线x+2y-3=0被圆(x-2)2+(y+1)2=4截得的弦长为.解析:圆(x-2)2+(y+1)2=4的圆心为C(2,-1),半径r=2,圆心C到直线x+2y-3=0的距离为d=,所求弦长l=2=2.答案:15.已知直线x-y+a=0与圆心为C的圆x2+y2+2x-4y-4=0相交于A,B两点,且AC⊥BC,则实数a的值为.解析:由题意,得圆心C的坐标为(-1,2),半径r=3.因为AC⊥BC,所以圆心C到直线x-y+a=0的距离d=r=,即|-3+a|=3,所以a=0或a=6.答案:0或6三、解答题(本大题共4小题,共25分.解答时应写出文字说明、证明过程或演算步骤)16.(6分)如图,在平面直角坐标系xOy中,点A(0,3),直线l:y=2x-4.设圆C的半径为1,圆心在l上.-5-(1)若圆心C也在直线y=x-1上,过点A作圆C的切线,求切线的方程;(2)若圆C上存在点M,使MA=2MO,求圆心C的横坐标a的取值范围.解:(1)由题设,圆心C是直线y=2x-4和y=x-1的交点,解得点C(3,2),于是切线的斜率必存在.设过A(0,3)的圆C的切线方程为y=kx+3,由题意,=1,解得k=0或-,故所求切线方程为y=3或3x+4y-12=0.(2)因为圆心在直线y=2x-4上,所以圆C的方程为(x-a)2+[y-2(a-2)]2=1.设点M(x,y),因为MA=2MO,所以=2,化简得x2+y2+2y-3=0,即x2+(y+1)2=4,所以点M在以D(0,-1)为圆心,2为半径的圆上.由题意,点M(x,y)在圆C上,所以圆C与圆D有公共点,则|2-1|≤CD≤2+1,即1≤≤3.由5a2-12a+8≥0,得a∈R;由5a2-12a≤0,得0≤a≤.所以点C的横坐标a的取值范围为.17.(6分)已知圆C:x2+y2+2x-4y+1=0.(1)若圆C的切线在x轴,y轴上截距相等,求此切线方程;(2)从圆C外一点P(x0,y0)向圆引切线PM,M为切点,O为原点,若|PM|=|PO|,求使取最小值时P点的坐标.解:圆C:x2+y2+2x-4y+1=0,其圆心C(-1,2),半径r=2.(1)若切线过原点,设为y=kx(k≠0),则=2,∴k=0(舍)或k=.若切线不过原点,设为x+y=a,则=2,∴a=1±2,∴切线方程为y=x或x+y-1+2=0或x+y-1-2=0.-6-(2)由|PM|=|PO|,得,∴2x0-4y0+1=0.由的几何意义知其最小值为.此时设l:y-0=-2(x-2),即y=-2x+4,将其与2x-4y+1=0联立求出此时P.18.(6分)已知圆C的方程:x2+y2-2x-4y+m=0,其中m5.(1)若圆C与直线l:x+2y-4=0相交于M,N两点,且|MN|=,求m的值;(2)在(1)条件下,是否存在直线l:x-2y+c=0,使得圆上有四点到直线l的距离为?若存在,求出c的范围;若不存在,说明理由.解:(1)圆C的方程化为(x-1)2+(y-2)2=5-m,圆心C(1,2),半径r=,则圆心C(1,2)到直线l:x+2y-4=0的距离为d=.由于|MN|=,则|MN|=,有r2=d2+,∴5-m=,得m=4.(2)假设存在直线l:x-2y+c=0,使得圆上有四点到直线l的距离为,由于圆心C(1,2),半径r=1,则圆心C(1,2)到直线l:x-2y+c=0的距离为d=,解得4-c2+.19.(7分)如图,为保护河上古桥OA,规划建一座新桥BC,同时设立一个圆形保护区.规划要求:新桥BC与河岸AB垂直;保护区的边界为圆心M在线段OA上并与BC相切的圆,且古桥两端O和A到该圆上任意一点的距离均不少于80m.经测量,点A位于点O正北方向60m处,点C位于点O正东方向170m处(OC为河岸),tan∠BCO=.-7-(1)求新桥BC的长;(2)当OM多长时,圆形保护区的面积最大?解:解法一:(1)如图,以O为坐标原点,OC所在直线为x轴,建立平面直角坐标系xOy.由条件知A(0,60),C(170,0),直线BC的斜率kBC=-tan∠BCO=-.又因为AB⊥BC,所以直线AB的斜率kAB=.设点B的坐标为(a,b),则kBC==-,kAB=.解得a=80,b=120.所以BC==150.因此新桥BC的长是150m.(2)设保护区的边界圆M的半径为rm,OM=dm(0≤d≤60).由条件知,直线BC的方程为y=-(x-170),即4x+3y-680=0.由于圆M与直线BC相切,故点M(0,d)到直线BC的距离是r,即r=.因为O和A到圆M上任意一点的距离均不少于80m,所以即解得10≤d≤35.故当d=10时,r=最大,即圆面积最大.所以当OM=10m时,圆形保护区的面积最大.解法二:(1)如图,延长OA,CB交于点F.-8-因为tan∠FCO=,所以sin∠FCO=,cos∠FCO=.因为OA=60,OC=170,所以OF=OCtan∠FCO=,CF=,从而AF=OF-OA=.因为OA⊥OC,所以cos∠AFB=sin∠FCO=.又因为AB⊥BC,所以BF=AFcos∠AFB=,从而BC=CF-BF=150.因此新桥BC的长是150m.(2)设保护区的边界圆M与BC的切点为D,连接MD,则MD⊥BC,且MD是圆M的半径,并设MD=rm,OM=dm(0≤d≤60).因为OA⊥OC,所以sin∠CFO=cos∠FCO.故由(1)知sin∠CFO=,所以r=.因为O和A到圆M上任意一点的距离均不少于80m,所以即解得10≤d≤35.故当d=10时,r=最大,即圆面积最大.所以当OM=10m时,圆形保护区的面积最大.-9-
本文标题:2018-2019学年高中数学 第四章 圆与方程 测评B(含解析)新人教A版必修2
链接地址:https://www.777doc.com/doc-7938957 .html