您好,欢迎访问三七文档
1课时跟踪训练(二十二)空间向量的数量积1.已知A(2,-5,1),B(2,-2,4),C(1,-4,1),则向量AB与AC的夹角为________.2.已知|a|=2,|b|=3,〈a,b〉=60°,则|2a-3b|=________.3.若AB=(-4,6,-1),AC=(4,3,-2),|a|=1,且a⊥AB,a⊥AC,则a=________________________________________________________________________.4.已知a=(1,1,0),b=(0,1,1),c=(1,0,1),p=a-b,q=a+2b-c,则p·q=________.5.如图,120°的二面角的棱上有A,B两点,直线AC,BD分别在两个半平面内,且都垂直于AB.若AB=4,AC=6,BD=8,则CD的长为________.6.已知a=(1,5,-1),b=(-2,3,5).(1)若(ka+b)∥(a-3b),求k的值;(2)若(ka+b)⊥(a-3b),求k的值.7.已知A(1,1,1),B(2,2,2),C(3,2,4),求△ABC的面积.8.在长方体OABC-O1A1B1C1中,|OA|=2,|AB|=3,|AA1|=2,E是BC的中点.建立空间直角坐标系,用向量方法解决下列问题.(1)求直线AO1与B1E所成的角的余弦值;(2)作O1D⊥AC于D,求点O1到点D的距离.2答案1.解析:AB=(0,3,3),AC=(-1,1,0),∴cos〈AB,AC〉=332×2=12,∴〈AB,AC〉=60°.答案:60°2.解析:a·b=2×3×cos60°=3.∴|2a-3b|=4|a|2-12a·b+9|b|2=4×4-12×3+81=61.答案:613.解析:设a=(x,y,z),由题意有a·AB=0,a·AC=0,|a|=1,代入坐标可解得:x=313,y=413,z=1213或x=-313,y=-413,z=-1213.答案:313,413,1213或-313,-413,-12134.解析:∵p=(1,1,0)-(0,1,1)=(1,0,-1),q=(1,1,0)+2(0,1,1)-(1,0,1)=(0,3,1),∴p·q=1×0+0×3+(-1)×1=-1.答案:-15.解析:∵AC⊥AB,BD⊥AB,∴AC·AB=0,BD·AB=0.又∵二面角为120°,∴〈CA,BD〉=60°,∴CD2=|CD|2=(CA+AB+BD)2=CA2+AB2+BD2+2(CA·AB+CA·BD+AB·BD)=164,∴|CD|=241.答案:2416.解:ka+b=(k-2,5k+3,-k+5),a-3b=(1+3×2,5-3×3,-1-3×5)=(7,-4,-16).(1)∵(ka+b)∥(a-3b),3∴k-27=5k+3-4=-k+5-16,解得k=-13.(2)∵(ka+b)⊥(a-3b),∴(k-2)×7+(5k+3)×(-4)+(-k+5)×(-16)=0.解得k=1063.7.解:∵AB=(1,1,1),AC=(2,1,3),∴|AB|=3,|AC|=14,AB·AC=6,∴cos∠BAC=cos〈AB,AC〉=AB·AC|AB||AC|=63×14=427,∴sin∠BAC=1-cos2A=17=77,∴S△ABC=12|AB||AC|sin∠BAC=12×3×14×77=62.8.解:建立如图所示的空间直角坐标系.(1)由题意得A(2,0,0),O1(0,0,2),B1(2,3,2),E(1,3,0),∴1AO=(-2,0,2),1BE=(-1,0,-2),∴cos〈1AO,1BE〉=-2210=-1010.故AO1与B1E所成的角的余弦值为1010.(2)由题意得1OD⊥AC,AD∥AC,∵C(0,3,0),设D(x,y,0),∴1OD=(x,y,-2),AD=(x-2,y,0),AC=(-2,3,0),∴-2x+3y=0,x-2-2=y3,解得x=1813,y=1213,∴D1813,1213,0.4O1D=|1OD|=18132+12132+4=1144132=228613.
本文标题:2018-2019学年高中数学 课时跟踪训练(二十二)空间向量的数量积(含解析)苏教版选修2-1
链接地址:https://www.777doc.com/doc-7939052 .html