您好,欢迎访问三七文档
课时作业13微积分基本定理知识点一求简单定积分1.01x2dx等于()A.0B.13C.13x2D.2x答案B解析01x2dx=13x3|10=13×13-13×03=13.2.-π2π2(1+cosx)dx等于()A.πB.2C.π-2D.π+2答案D解析原式=(x+sinx)π2-π2=π2+sinπ2--π2+sin-π2=π+2.3.0π2sin2x2dx等于()A.π4B.π2-1C.2D.π-24答案D解析0π2sin2x2dx=0π21-cosx2dx=12(x-sinx)π20=π-24,故选D.4.求定积分12(t+2)dx.解令F(x)=(t+2)x,则F′(x)=t+2,∴12(t+2)dx=(t+2)x21=2(t+2)-(t+2)=t+2.知识点二分段函数的定积分5.定积分-22|x2-2x|dx=()A.5B.6C.7D.8答案D解析∵|x2-2x|=x2-2x,-2≤x0,-x2+2x,0≤x≤2,∴-22|x2-2x|dx=-20(x2-2x)dx+02(-x2+2x)dx=13x3-x2|0-2+-13x3+x2|20=8.6.若f(x)=x2,x≤0,cosx-1,x0,则1-1f(x)dx=________.答案-23+sin1解析-11f(x)dx=-10x2dx+01(cosx-1)dx=13x30-1+(sinx-x)|10=-23+sin1.知识点三定积分的简单应用7.若1a2x+1xdx=3+ln2,且a1,则a的值为()A.6B.4C.3D.2答案D解析∵1a2x+1xdx=(x2+lnx)|a1=a2+lna-1,∴a2+lna-1=3+ln2,∴a2-1=3,lna=ln2.∴a=2.一、选择题1.下列定积分计算正确的是()A.-ππsinxdx=4B.012xdx=1C.121-1xdx=lne2D.-113x2dx=3答案C解析-ππsinxdx=-cosx|π-π=0;012xdx=2xln2|10=log2e;121-1xdx=(x-lnx)|21=1-ln2=lne2;-113x2dx=x31-1=2.故选C.2.已知积分01(kx+1)dx=k,则实数k=()A.2B.-2C.1D.-1答案A解析因为01(kx+1)dx=k,所以12kx2+x|10=k.所以12k+1=k,所以k=2.3.03|x2-4|dx=()A.213B.223C.233D.253答案C解析∵|x2-4|=x2-4,2≤x≤3,4-x2,0≤x≤2,∴03|x2-4|dx=23(x2-4)dx+02(4-x2)dx=13x3-4x|32+4x-13x3|20=--83-8+8-83-0=-3-83+8+8-83=233.4.若a=24xdx,b=244xdx,c=246x-x2-8dx,则a,b,c的大小关系为()A.a<b<cB.b<a<cC.b<c<aD.c<b<a答案D解析∵a=12x2|42=8-2=6,b=(4lnx)|42=4(ln4-ln2)=4ln2.又6>4lne>4ln2,∴a>b.由定积分的几何意义,可知c=241-x-2dx=π2.又4ln2=ln16>lne2=2>π2,∴b>c,故c<b<a.5.若函数f(x)=xm+nx的导函数是f′(x)=2x+1,则12f(-x)dx=()A.56B.12C.23D.16答案A解析∵f(x)=xm+nx的导函数是f′(x)=2x+1,∴f(x)=x2+x,∴12f(-x)dx=12(x2-x)dx=13x3-12x2|21=56.二、填空题6.已知等差数列{an}的前n项和为Sn,且S10=03(1+2x)dx,则a5+a6=________.答案125解析S10=03(1+2x)dx=(x+x2)|30=3+9=12.因为{an}是等差数列,所以S10=a5+a62=5(a5+a6)=12,所以a5+a6=125.7.已知f(x)是偶函数,且06f(x)dx=8,则-66f(x)dx=________.答案16解析因为函数f(x)是偶函数,所以函数f(x)在y轴两侧的图象对称,所以-60f(x)dx=-60f(x)dx+06f(x)dx=206f(x)dx=16.8.函数y=x2与y=kx(k0)的图象所围成的阴影部分的面积为92,则k=________.答案3解析由y=kx,y=x2,解得x=0,y=0或x=k,y=k2.由题意,得0k(kx-x2)dx=12kx2-13x3|k0=12k3-13k3=16k3=92,∴k=3.三、解答题9.计算下列定积分.(1)122x2-1xdx;(2)23x+1x2dx;(3)0π3(sinx-sin2x)dx.解(1)∵23x3-lnx′=2x2-1x,∴122x2-1xdx=23x3-lnx21=23×23-ln2-23×13-ln1=143-ln2.(2)∵x+1x2=x+1x+2,且x22+lnx+2x′=x+1x+2,∴23x+1x2dx=x22+lnx+2x32=322+ln3+6-222+ln2+4=92+ln32.(3)∵-cosx+12cos2x′=sinx-sin2x,∴0π3(sinx-sin2x)dx==-cosπ3+12cos2π3--cos0+12cos0=-12-14+1-12=-14.10.计算定积分-33(|2x+3|+|3-2x|)dx.解解法一:令2x+3=0,解得x=-32;令3-2x=0,解得x=32.解法二:设f(x)=|2x+3|+|3-2x|=-4x,-3≤x-32,6,-32≤x≤32,4x,32x≤3,如图,所求积分等于阴影部分面积,即-33(|2x+3|+|3-2x|)dx=S=2×12×(6+12)×32+3×6=45.
本文标题:2019-2020学年高中数学 1.6 微积分基本定理课时作业(含解析)新人教A版选修2-2
链接地址:https://www.777doc.com/doc-7974734 .html