您好,欢迎访问三七文档
13.求二次函数的表达式会根据不同的条件,利用待定系数法求二次函数的函数关系式.重点已知二次函数图象上一个点的坐标或三个点的坐标,分别求二次函数y=ax2,y=ax2+bx+c的关系式是教学的重点.难点已知图象上三个点坐标求二次函数的关系式是教学的难点.一、创设情境,引入新课一般地,函数关系式中有几个独立的系数,那么就需要有相同个数的独立条件才能求出函数关系式.例如:我们在确定一次函数y=kx+b(k≠0)的关系式时,通常需要两个独立的条件;确定反比例函数y=kx(k≠0)的关系式时,通常只需要一个条件;如果要确定二次函数y=ax2+bx+c(a≠0)的关系式,又需要几个条件呢?二、思考探究,获取新知例1某涵洞是抛物线形,它的截面如图所示,现测得水面宽1.6m,涵洞顶点O到水面的距离为2.4m,在图中直角坐标系内,涵洞所在的抛物线的函数关系式是什么?分析如图,以AB的垂直平分线为y轴,以过点O的y轴的垂线为x轴,建立了直角坐标系.这时,涵洞所在的抛物线的顶点在原点,对称轴是y轴,开口向下,所以可设它的函数关系式是y=ax2(a<0).此时只需抛物线上的一个点就能求出抛物线的函数关系式.解由题意,得点B的坐标为(0.8,-2.4),又因为点B在抛物线上,将它的坐标代入y=ax2(a<0),得-2.4=a×0.82,所以a=-154.因此,函数关系式是y=-154x2.例2根据下列条件,分别求出对应的二次函数的关系式.(1)已知二次函数的图象经过点A(0,-1),B(1,0),C(-1,2);(2)已知抛物线的顶点为(1,-3),且与y轴交于点(0,1);(3)已知抛物线与x轴交于点(-3,0),(5,0),且与y轴交于点(0,-3);(4)已知抛物线的顶点为(3,-2),且与x轴两交点间的距离为4.分析(1)根据二次函数的图象经过三个已知点,可设函数关系式为y=ax2+bx+c的形式;(2)根据已知抛物线的顶点坐标,可设函数关系式为y=a(x-1)2-3,再根据抛物线与y轴的交点可求出a的值;(3)根据抛物线与x轴的两个交点的坐标,可设函数关系式为y=a(x+3)(x-5),再根据抛物线与y轴的交点可求出a的值;(4)根据已知抛物线的顶点坐标(3,-2),可设函数关系式为y=a(x-3)2-2,同时可知抛物线的对称轴为直线x=3,2再由与x轴两交点间的距离为4,可得抛物线与x轴的两个交点为(1,0)和(5,0),任选一个代入y=a(x-3)2-2,即可求出a的值.解(1)设二次函数关系式为y=ax2+bx+c,由已知,这个函数的图象过(0,-1),可以得到c=-1.又由于其图象过点(1,0),(-1,2)两点,可以得到a+b=1,a-b=3,解这个方程组,得a=2,b=-1.所以,所求二次函数的关系式是y=2x2-x-1.(2)因为抛物线的顶点为(1,-3),所以设二次函数的关系式为y=a(x-1)2-3,又由于抛物线与y轴交于点(0,1),可以得到1=a(0-1)2-3,解得a=4.所以,所求二次函数的关系式是y=4(x-1)2-3=4x2-8x+1.(3)因为抛物线与x轴交于点(-3,0),(5,0),所以设二次函数的关系式为y=a(x+3)(x-5),又由于抛物线与y轴交于点(0,-3),可以得到-3=a(0+3)(0-5).解得a=15.所以,所求二次函数的关系式是y=15(x+3)(x-5)=15x2-25x-3.(4)根据前面的分析,本题已转化为与(2)相同的题型,请同学们自己完成.回顾与反思:确定二次函数的关系式的一般方法是待定系数法,在选择把二次函数的关系式设成什么形式时,可根据题目中的条件灵活选择,以简单为原则.二次函数的关系式可设如下三种形式:(1)一般式:y=ax2+bx+c(a≠0),给出三点坐标可利用此式来求.(2)顶点式:y=a(x-h)2+k(a≠0),给出两点,且其中一点为顶点时可利用此式来求.(3)交点式:y=a(x-x1)(x-x2)(a≠0),给出三点,其中两点为与x轴的两个交点时可利用此式来求.三、练习巩固1.已知二次函数y=x2+bx+c的图象经过点A(-1,12),B(2,-3).(1)求该二次函数的关系式;(2)用配方法把(1)所得的函数关系式化成y=a(x-h)2+k的形式,并求出该抛物线的顶点坐标和对称轴.2.已知二次函数的图象与一次函数y=4x-8的图象有两个公共点P(2,m),Q(n,-8),如果抛物线的对称轴是直线x=-1,求该二次函数的关系式.3.某工厂大门是一抛物线型水泥建筑物,如图所示,大门地面宽AB=4m,顶部C离地面高度为4.4m.现有一辆满载货物的汽车欲通过大门,货物顶部距地面2.8m,装货宽度为2.4m.请判断这辆汽车能否顺利通过大门.4.已知二次函数y=ax2+bx+c,当x=3时,函数取得最大值10,且它的图象在x轴上截得的弦长为4,试求二次函数的关系式.5.已知二次函数y=x2+bx+c的图象经过(1,0)与(2,5)两点.(1)求这个二次函数的关系式;(2)请你换掉题中的部分已知条件,重新设计一个求二次函数y=x2+bx+c关系式的题目,使所求得的二次函数与(1)的相同.四、小结与作业3小结求二次函数关系式的一般步骤是什么?有哪几种求法?作业1.布置作业:教材“习题26.2”中第4,5题.2.完成同步练习册中本课时的练习.确定二次函数的关系式的一般方法是待定系数法,在选择把二次函数的关系式设成什么形式时,可根据题目中的条件灵活选择,以简单为原则.
本文标题:九年级数学下册第26章二次函数262二次函数的图象与性质3求二次函数的表达式教案新版华东师大版
链接地址:https://www.777doc.com/doc-7997373 .html