您好,欢迎访问三七文档
幂的乘方1.如果,,,那么a、b、c的大小关系是A.B.C.D.2.的结果是A.0B.C.D.3.若,,则等于A.6B.7C.8D.184.已知,则的值为______.5.已知,,则______.6.若,则______.7.若8x=4x+2,则x=________.8.若x2n=2,则x6n=________.9.已知2×4m×8m=216,m=________.10.已知a=255,b=344,c=433,d=522,则这四个数从大到小排列顺序是________.11.已知,求的值.12.已知[(x2)n]3=x24,求n的值.13.已知:26=a2=4b,求a+b的值.14.若x=2m+1,y=3+4m.(1)请用含x的代数式表示y;(2)如果x=4,求此时y的值.答案和解析【答案】1.C2.D3.C4.A5.D6.A7.D8.A9.D10.A11.24312.13.14.15.16.917.18.ab19.20.21.解:原式;原式.22.解:原式23.解:原式;原式.24.解:25.解:,,.26.解:由,得,;由,得,,解得;当,时,.当,时,.所以的值为36或0.【解析】1.解:,故选:C.将原式拆成即可得.本题主要考查幂的乘方与积的乘方,掌握幂的乘方与积的乘方的运算法则是解题的关键.2.【分析】本题主要考查了整式的运算,根据同底数幂的乘法,可判断A,根据幂的乘方,可判断B,根据合并同类项,可判断C,根据平方差公式,可判断本题考查了平方差,利用了平方差公式,同底数幂的乘法,幂的乘方.【解答】解:A、原式,故A错误;B、原式,故B错误;C、原式,故C错误;D、原式,故D正确;故选D.3.解:,,,,.故选:C.根据幂的乘方得出指数都是11的幂,再根据底数的大小比较即可.本题考查了幂的乘方,关键是掌握.4.【分析】此题主要考查了幂的乘方运算,正确化简各式是解题关键直接利用幂的乘方运算法则化简进而合并求出答案.【解答】解:.故选A.5.解:,,.故选:D.直接利用幂的乘方运算法则结合同底数幂的乘法运算法则求出答案.此题主要考查了幂的乘方运算以及同底数幂的乘法运算,正确掌握运算法则是解题关键.6.【分析】本题主要利用:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数以及幂的乘方的性质,需要熟练掌握并灵活运用.根据幂的运算性质对各选项进行逐一计算即可判断.【解答】解:,故本选项错误;,故本选项错误;,故本选项错误;,正确.所以只有一个正确.故选A.7.解:,,,,;,;,.错误的为D.故选D.根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,依此即可得到a、b、c之间的关系.考查了幂的乘方和积的乘方、同底数幂的乘法,解答本题的关键是掌握各知识点的运算法则.8.解:,故选:A.根据积的乘方和幂的乘方法则求解.本题考查了积的乘方和幂的乘方,熟练掌握运算法则是解题的关键.9.解:A、,本选项正确;B、,本选项正确;C、,本选项正确;D、,本选项错误.故选D.原式各项利用积的乘方与幂的乘方运算法则计算得到结果,即可做出判断.此题考查了幂的乘方与积的乘方,以及单项式乘以单项式,熟练掌握运算法则是解本题的关键.10.解:.故选:A.直接利用积的乘方运算法则求出答案.此题主要考查了积的乘方运算法则,正掌握运算法则是解题关键.11.【分析】本题考查了同底数幂的乘法,先根据同底数幂的乘法法则和幂的乘方法则将变形为,然后再把代入计算即可.【解答】解:,,.故答案为243.12.【分析】本题考查了积的乘方,利用幂的乘方底数不变指数相乘得出积的乘方是解题关键根据幂的乘方底数不变指数相乘,可得积的乘方,根据积的乘方,可得答案【解答】解:原式,故答案为.13.解:,故答案为:.根据同底数幂的乘法底数不变指数相加,同底数幂的除法底数不变指数相减,可得答案.本题考查了同底数幂的除法,熟记法则并根据法则计算是解题关键.14.解:原式,故答案为.根据幂的乘方与合并同类项的法则进行计算即可.本题考查了幂的乘方和合并同类项,掌握运算法则是解题的关键.15.解:,故答案为:.根据幂的乘方和积的乘方,即可解答.本题考查了幂的乘方和积的乘方,解决本题的关键是熟记幂的乘方和积的乘方.16.解:原式.故答案为:9.根据同底数幂的乘法及幂的乘方法则进行运算即可.本题考查了幂的乘方及同底数幂的乘法运算,属于基础题,关键是掌握各部分的运算法则.17.解:.故答案为:.直接利用幂的乘方运算法则计算得出答案.此题主要考查了幂的乘方运算等知识,正确掌握运算法则是解题关键.18.解:,,,,.故答案为:ab.直接利用幂的乘方运算法则将原式变形求出答案.此题主要考查了幂的乘方运算,正确将原式变形是解题关键.19.解:,故答案为:.根据同底数幂的除法底数不变指数相减,幂的乘方,可得答案.本题考察了同底数幂的除法、幂的乘方,熟记法则并根据法则计算是解题关键.20.解:,,,,,,故答案为:.根据幂的乘方与积的乘方,即可解答.本题考查了幂的乘方与积的乘方,解决本题的关键是注意公式的逆运用.21.原式利用幂的乘方与积的乘方运算法则计算即可得到结果;原式利用绝对值的代数意义,零指数幂、负整数指数幂法则,以及乘方的意义计算即可得到结果.此题考查了同底数幂的乘法,以及实数的运算,熟练掌握运算法则是解本题的关键.22.根据同底数幂的乘法的性质:底数不变指数相加,幂的乘方的性质:底数不变指数相乘,积的乘方的性质进行计算.本题考查了同底数幂的乘法的性质,幂的乘方的性质,积的乘方的性质.23.原式利用零指数幂、负整数指数幂法则,以及绝对值的代数意义化简,计算即可得到结果;原式利用幂的乘方与积的乘方运算法则计算,合并即可得到结果.此题考查了单项式乘单项式,幂的乘方与积的乘方,以及零指数幂、负整数指数幂,熟练掌握运算法则是解本题的关键.24.首先计算乘方,然后从左向右依次计算,求出算式的值是多少即可.首先计算乘方和乘法,然后从左向右依次计算,求出算式的值是多少即可.此题主要考查了幂的乘方和积的乘方,零指数幂、负整数指数幂的运算方法,以及同底数幂的乘法的运算方法,要熟练掌握,解答此题的关键是要明确:n是正整数;是正整数.25.利用积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘把代数式化简,再把已知代入求值即可.本题主要考查积的乘方的性质,熟练掌握运算性质是解题的关键.26.先把已知条件转化成以3为底数的幂,求出a、b的值,再代入代数式计算即可.根据幂的乘方的性质把已知条件转化为以3为底数的幂求出a、b的值是解题的关键;需要注意,容易被同学们漏掉而导致求解不完全.
本文标题:七年级数学下册 第一章 整式的乘除 2 幂的乘方与积的乘方 第1课时 幂的乘方练习2(新版)北师大版
链接地址:https://www.777doc.com/doc-8015805 .html