您好,欢迎访问三七文档
第1课时利用二元一次方程组解决实际问题一般步骤:(1)审:审题、弄清题意及题目中的数量关系;(2)设:设未知数,可直接设元,也可以间接设元;(3)找:找出等量关系;(4)列:列方程组,根据题目中能表示全部含义的相等关系列出方程,并组成方程组;(5)解:解方程组,并检验是否符合问题的实际意义;(6)答:写出答案,作答。1、产品配套问题:加工总量成比例例1、用白铁皮做罐头盒。每张铁皮可制盒身16个,或制盒底43个,一个盒身与两个盒底配成一套罐头盒。现有150张白铁皮,用多少张制盒身,多少张制盒底,可以刚好配套?等量关系:练1-1、现用190张铁皮做盒子,每张铁皮做8个盒身或做22个盒底,一个盒身与两个盒底配成一个完整盒子,问:用多少张铁皮制盒身,多少张铁皮制盒底,可以正好制成一批完整的盒子?等量关系:练1-2、某车间有技术工人85人,平均每天每人可加工甲种部件16个或乙种部件10个。两个甲种部件和三个乙种部件配成一套,问加工甲乙部件各安排多少人才能使每天加工的甲、乙两种部件刚好配套?等量关系:练1-3、某车间有工人56名,生产一种螺栓和螺母,每人每天平均能生产螺栓24个或螺母36个,应分配多少人生产螺栓,多少人生产螺母,才能使一个螺栓配2个螺母刚好配套?等量关系:练1-4、机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,2个大齿轮和3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?等量关系:2、航速问题①顺流(风):航速=静水(无风)中的速度+水(风)速;②逆流(风):航速=静水(无风)中的速度-水(风)速;例2、一条船顺水行驶36千米和逆水行驶24千米的时间都是3小时,求船在静水中的速度与水流的速度。静水速度水流速度等量关系方程式顺水时:顺水时:逆水时:逆水时:练2-1、两地相距280km,一艘轮船在其间航行,顺流用了14h,逆流用了20h,那么这艘轮船在静水中的速度是。等量关系:练2-2、一只船顺水每小时行17千米,逆水每小时行13千米,求这只船在静水中的速度和水流速度?等量关系:3、工程问题工作量=工作效率×工作时间;①工作总量已知;②工作总量未知时,一般设为“单位1”。例3、(1)一批机器零件共840个,如果甲先做4天,乙加入合做,那么再做8天才能完成;如果乙先做4天,甲加入合做,那么再做9天才能完成,问两人每天各做多少个机器零件?等量关系:(2)甲、乙两部抽水机共同灌溉一块稻田,5小时可以完成任务的13。已知甲抽水机3小时的抽水量等于乙抽水机5小时的抽水量,甲、乙抽水机单独灌溉这块稻田各需几小时?等量关系:练3-1、加工420个机器零件,甲先做2天,乙加入合做,再做2天完成;如果乙先做2天,甲加入合做,那么再做3天完成.求两人每天各做多少个机器零件?等量关系:练3-2、甲、乙两人做同样的机器零件,若甲先做一天,乙再开始做,再做5天后两人做的零件同样多;若甲先做30个,乙再开始做,4天后反而比甲多做10个。(1)求甲、乙两人每天各做多少个零件?(2)若甲、乙两人共同完成一批零件可得报酬660元,问如何分配才公平?等量关系:练3-3、一家商店进行装修,若请甲、乙两个装修组同时施工,8天可以完成;若先请甲组单独做6天,再请乙组单独做12天可以完成。求甲、乙两组单独完成各需要多少天?等量关系:4、行程问题路程=速度×时间;例4、甲、乙二人相距6km,二人同向而行,甲3小时可追上乙;相向而行,1小时相遇。二人的平均速度各是多少?甲的平均速度乙的平均速度等量关系方程式同向而行:同向而行:相向而行:相向而行:练4-1、甲、乙两人分别从相距30千米的A、B两地同时相向而行,经过3小时后相距3千米,再经过2小时,甲到B地所剩路程是乙到A地所剩路程的2倍,求甲、乙两人的速度。等量关系:练4-2、通讯员要在规定时间内到达某地,他每小时走15千米,则可提前24分钟到达某地;如果每小时走12千米,则要迟到15分钟。求通讯员到达某地的路程是多少千米?和原定的时间为多少小时?等量关系:
本文标题:七年级数学下册 第八章 二元一次方程组8.3 实际问题与二元一次方程组第1课时 利用二元一次方程组解
链接地址:https://www.777doc.com/doc-8017277 .html