您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 不等式组应用题及答案
精编WORD文档下载可编缉打印下载文档,远离加班熬夜不等式组应用题及答案篇一:不等式(组)应用题类型及解答(包含各种题型)一元一次不等式(组)应用题类型及解答1.分配问题1、一堆玩具分给若干个小朋友,若每人分3件,则剩余4件,若前面每人分4件,则最后一人得到的玩具最多3件,问小朋友的人数至少有多少人?。3、把若干颗花生分给若干只猴子。如果每只猴子分3颗,就剩下8颗;如果每只猴子分5颗,那么最后一只猴子虽分到了花生,但不足5颗。问猴子有多少只,有多少颗?4、把一些书分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人就分不到3本。问这些书有多少本?学生有多少人?5、某中学为八年级寄宿学生安排宿舍,如果每间4人,那么有20人无法安排,如果每间8人,那么有一间不空也不满,求宿舍间数和寄宿学生人数。6、将不足40只鸡放入若干个笼中,若每个笼里放4只,则有一只鸡无笼可放;若每个笼里放5只,则有一笼无鸡可放,且最后一笼不足3只。问有笼多少个?有鸡多少只?7、用若干辆载重量为8吨的汽车运一批货物,若每辆汽车只装4吨,则剩下20吨货物;若每辆汽车装满8吨,则最后精编WORD文档下载可编缉打印下载文档,远离加班熬夜一辆汽车不满也不空。请问:有多少辆汽车?8、一群女生住若干家间宿舍,每间住4人,剩下19人无房住;每间住6人,有一间宿舍住不满。(1)如果有x间宿舍,那么可以列出关于x的不等式组:(2)可能有多少间宿舍、多少名学生?你得到几个解?它符合题意吗?二、比较问题1、某校王校长暑假将带领该校市级三好学生去北京旅游。甲旅行社说如果校长买全票一张,则其余学生可享受半价优惠,乙旅行社说包括校长在内全部按全票价的6折优惠(按全票价的60%收费,且全票价为1200元)①学生数为x,甲旅行社收费为y甲,乙旅行社收费为y乙,分别计算两家旅行社的收费(写出表达式)②当学生数是多少时,两家旅行社的收费一样???就学生数x讨论哪家旅行社更优惠。③就学生数x讨论哪家旅行社更优惠。2、李明有存款600元,王刚有存款2000元,从本月开始李明每月存款500元,王刚每月存款200元,试问到第几个月,李明的存款能超过王刚的存款。3、暑假期间,两名家长计划带领若干名学生去旅游,他们联系了报价为每人500元的两家旅行社,经协商,甲旅行社的优惠条件是:两名家长全额收费,学生都按七折;乙旅行社的精编WORD文档下载可编缉打印下载文档,远离加班熬夜优惠条件是:家长,学生都按八折收费。假设这两位家长至带领多少名学生去旅游,他们应该选择甲旅行社?三、行程问题1、抗洪抢险,向险段运送物资,共有120公里原路程,需要1小时送到,前半小时已经走了50公里后,后半小时速度多大才能保证及时送到?2、爆破施工时,导火索燃烧的速度是0.8cm/s,人跑开的速度是5m/s,为了使点火的战士在施工时能跑到100m以外的安全地区,导火索至少需要多长?3、王凯家到学校2.1千米,现在需要在18分钟内走完这段路。已知王凯步行速度为90米/分,跑步速度为210米/分,问王凯至少需要跑几分钟?四、车费问题1、出租汽车起价是10元(即行驶路程在5km以内需付10元车费),达到或超过5km后,每增加1km加价1.2元(不足1km部分按1km计),现在某人乘这种出租,汽车从甲地到乙地支付车费17.2元,从甲地到乙地的路程超过多少km?2、某种出租车的收费标准是:起步价7元(即行驶距离不超过3km都需要7元车费),超过3km,每增加1km,加收2.4元(不足1km按1km计)。某人乘这种出租车从A地到B地共支付车费19元。设此人从A地到B地经过的路程最多是多少km?精编WORD文档下载可编缉打印下载文档,远离加班熬夜五、积分问题1、某次数学测验共20道题(满分100分)。评分办法是:答对1道给5分,答错1道扣2分,不答不给分。某学生有1道未答。那么他至少答对几道题才能及格?2、在一次竞赛中有25道题,每道题目答对得4分,不答或答错倒扣2分,如果要求在本次竞赛中的得分不底于60分,至少要答对多少道题目?3、一次知识竞赛共有15道题。竞赛规则是:答对1题记8分,答错1题扣4分,不答记0分。结果神箭队有2道题没答,飞艇队答了所有的题,两队的成绩都超过了90分,两队分别至少答对了几道题?4、在比赛中,每名射手打10枪,每命中一次得5分,每脱靶一次扣1分,得到的分数不少于35分的射手为优胜者,要成为优胜者,至少要中靶多少次?5.有红、白颜色的球若干个,已知白球的个数比红球少,但白球的两倍比红球多,若把每一个白球都记作数2,每一个红球都记作数3,则总数为60,求白球和红球各几个?六、销售问题1、商场购进某种商品m件,每件按进价加价30元售出全部商品的65%,然后再降价10%,这样每件仍可获利18元,又售出全部商品的25%。(1)试求该商品的进价和第一次的售价;精编WORD文档下载可编缉打印下载文档,远离加班熬夜(2)为了确保这批商品总的利润率不低于25%,剩余商品的售价应不低于多少元?2.水果店进了某中水果1t,进价是7元/kg。售价定为10元/kg,销售一半以后,为了尽快售完,准备打折出售。如果要使总利润不低于2000元,那么余下的水果可以按原定价的几折出售?篇二:不等式组应用题及答案解答题1、(2006?嘉峪关)为节?ahref=/zhaoshangjiameng/target=_blankclass=keylink加盟逞诒狙诔踔贫讼晗傅挠盟苹绻导时燃苹刻於嘤?t水,那么本学期的用水量将会超过2530t;如果实际每天比计划节约2t水,那么本学期用水量将不会超过2200t,若本学期在校时间按110天计算,那么学校每天用水量将控制在什么范围内?解答:解:设学校计划每天用水x吨,依题意可得解不等式①得x+2>23,即x>21,解不等式②得x﹣2≤20,即x≤22,∴不等式组的解集21<x≤22,答:学校的每天用水吨数应控制在21~22吨.点评:解决本题的关键是读懂题意,找到符合题意的不等关系式组.准确的解不等式组是需要掌握的基本能力.精编WORD文档下载可编缉打印下载文档,远离加班熬夜2、(2006?淮安)小明放学回家后,问爸爸妈妈小牛队与太阳队篮球比赛的结果.爸爸说:“本场比赛太阳队的纳什比小牛队的特里多得了12分.”妈妈说:“特里得分的两倍与纳什得分的差大于10,纳什得分的两倍比特里得分的三倍还多.”爸爸又说:“如果特里得分超过20分,则小牛队赢;否则太阳队赢.”请你帮小明分析一下,究竟是哪个队赢.本场比赛特里、纳什各得了多少分?解答:解:设本场比赛特里得了x分,则纳什得了(x+12)分,根据题意,得.解得22<x<24.因为x为整数,故x=23,23+12=35.23>20.答:小牛队赢了,特里得了23分,纳什得了35分.点评:解决本题的关键是读懂题意,找到符合题意的不等式组.并且要注意未知数的取值是正整数.3、(2006?哈尔滨)晓跃汽车销售公司到某汽车制造厂选购A、B两种型号的轿车,用300万元可购进A型轿车10辆,B型轿车15辆;用300万元也可以购进A型轿车8辆,B型轿车18辆.(1)求A、B两种型号的轿车每辆分别为多少元?精编WORD文档下载可编缉打印下载文档,远离加班熬夜(2)若该汽车销售公司销售1辆A型轿车可获利8000元,销售1辆B型轿车可获利5000元,该汽车销售公司准备用不超过400万元购进A、B两种型号轿车共30辆,且这两种轿车全部售出后总获利不低于20.4万元,问有几种购车方案?在这几种购车方案中,该汽车销售公司将这些轿车全部售出后,分别获利多少万元?解答:解:(1)设A型号的轿车每辆为x万元,B型号的轿车每辆为y万元.根据题意得解得答:A、B两种型号的轿车每辆分别为15万元、10万元;(2)设购进A种型号轿车a辆,则购进B种型号轿车(30﹣a)辆.根据题意得解此不等式组得18≤a≤20.∵a为整数,∴a=18,19,20.∴有三种购车方案.方案一:购进A型号轿车18辆,购进B型号轿车12辆;方案二:购进A型号轿车19辆,购进B型号车辆11辆;方案三:购进A型号轿车20辆,购进B型号轿车10辆.汽车销售公司将这些轿车全部售出后:方案一获利18×0.8+12×0.5=20.4(万元);方案二获利19×0.8+11×0.5=20.7(万元);方案三获利20×0.8+10×0.5=21(万元).精编WORD文档下载可编缉打印下载文档,远离加班熬夜答:有三种购车方案,在这三种购车方案中,汽车销售公司将这些轿车全部售出后分别获利为20.4万元,20.7万元,21万元.点评:此题是典型的数学建模问题,要先将实际问题转化为列方程组和列不等式组解应用题.5、(2005?重庆)由于电力紧张,某地决定对工厂实行鼓励错峰用电.规定:在每天的7:00至24:00为用电高峰期,电价为a元/度;每天0:00至7:00为用电平稳期,电价为b(1)若4月份在平稳期的用电量占当月用电量的,5月份在平稳期的用电量占当月用电量的,求a、b的值;(2)若6月份该厂预计用电20万度,为将电费控制在10万元至10.6万元之间(不含10万元和10.6万元),那么该厂6月份在平稳期的用电量占当月用电量的比例应在什么范围?(2)可设6月份在平稳期的用电量占当月用电量的比例为k,因6月份该厂预计用电20万度,为将电费控制在10万元至10.6万元之间(不含10万元和10.6万元),依此列方程求解.解答:解:(1)由题意得方程组,解得.(2)设6月份在平稳期的用电量占当月用电量的比例为k.由题意得10<20(1﹣k)×0.6+20k×0.4<10.6解得0.35<k<0.5精编WORD文档下载可编缉打印下载文档,远离加班熬夜答:该厂6月份在平稳期的用电量占当月用电量的比例在35%到50%之间(不含35%和50%).点评:本题是一道与生活联系紧密的应用题,主要考查列二元一次方程组、一元一次不等式解决问题能力.6、(2005?中山)某夏令营的活动时间为15天,营员的宿舍安装了空调.如果某间宿舍每天比原计划多开2个小时的空调,那么开空调的总时间超过150小时;如果每天比原计划少开2个小时的空调,那么开空调的总时间不足120小时,问原计划每天开空调的时间为多少小时?解答:解:设原计划每天开空调的时间为x小时,依题意可得解得8<x<10答:每天开空调的时间为8<x<10小时.点评:此题的不等关系比较明显,列不等式组即可.读懂题意,找到相等或不等关系准确的列出式子是解题的关键.10、(2005?茂名)今年6月份,我市某果农收获荔枝30吨,香蕉13吨,现计划租用甲、乙两种货车共10辆将这批水果全部运往深圳,已知甲种货车可装荔枝4吨和香蕉1吨,乙种货车可装荔枝香蕉各2吨;(1)该果农按排甲、乙两种货车时有几种方案?请你帮助设计出来;(2)若甲种货车每辆要付运输费2000元,乙种货车每辆要精编WORD文档下载可编缉打印下载文档,远离加班熬夜付运输费1300元,则该果农应选择哪种方案使运费最少,最少运费是多少元?出不等式组进行求解;(2)方法一:在所用的两种车的辆数一定时,所需货车的单价费用越低,所需的总费用越少;方法二:将每种方案的总费用算出,进行比较.解答:解:(1)设安排甲种货车x辆,则安排乙种货车(10﹣x)辆,依题意得解这个不等式组得∴5≤x≤7∵x是整数∴x可取5、6、7,即安排甲、乙两种货车有三种方案:①甲种货车5辆,乙种货车5辆;②甲种货车6辆,乙种货车4辆;③甲种货车7辆,乙种货车3辆.(2)方法一:由于甲种货车的运费高于乙种货车的运费,两种货车共10辆,所以当甲种货车的数量越少时,总运费就越少,故该果农应选择①运费最少,最少运费是16500元;方法二:方案①需要运费:2000×5+1300×5=16500(元)方案②需要运费:2000×6+1300×4=17200(元)方案③需要运费:2000×7+1300×3=17900(元)精编WORD文档下载可编缉打印下载文档,远离加班熬夜∴该果农应选择①运费最少,最少运费
本文标题:不等式组应用题及答案
链接地址:https://www.777doc.com/doc-8029523 .html