您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 2021年上海高考数学(理科)试卷【A3大小】
精编WORD文档下载可编缉打印下载文档,远离加班熬夜2021年上海高考数学(理科)试卷【A3大小】篇一:2021年上海市春季高考数学试卷(含答案详解)2021年上海市春季高考数学试卷一.填空题(本大题共12题,满分48分,第1~6题每题4分,第7~12题每题5分)1.设集合A={1,2,3},集合B={3,4},则A∪B=.2.不等式|x﹣1|<3的解集为.3.若复数z满足2﹣1=3+6i(i是虚数单位),则z=.4.若,则=.无解,则实数a=.5.若关于x、y的方程组6.若等差数列{an}的前5项的和为25,则a1+a5=.7.若P、Q是圆x2+y2﹣2x+4y+4=0上的动点,则|PQ|的最大值为.8.已知数列{an}的通项公式为9.若为.10.设椭圆的左、右焦点分别为F1、F2,点P在该椭圆上,则使得△,则=.的二项展开式的各项系数之和为729,则该展开式中常数项的值精编WORD文档下载可编缉打印下载文档,远离加班熬夜F1F2P是等腰三角形的点P的个数是.11.设a1、a2、…、a6为1、2、3、4、5、6的一个排列,则满足|a1﹣a2|+|a3﹣a4|+|a5﹣a6|=3的不同排列的个数为.12.设a、b∈R,若函数f(1)的取值范围为.二.选择题(本大题共4题,每题5分,共20分)13.函数f(x)=(x﹣1)2的单调递增区间是()A.[0,+∞)B.[1,+∞)C.(﹣∞,0]D.(﹣∞,1]14.设a∈R,“a>0”是“”的()条件.在区间(1,2)上有两个不同的零点,则A.充分非必要B.必要非充分C.充要D.既非充分也非必要15.过正方体中心的平面截正方体所得的截面中,不可能的图形是()A.三角形B.长方形C.对角线不相等的菱形D.六边形16.如图所示,正八边形A1A2A3A4A5A6A7A8的边长为2,若P为该正八边形边上的动点,则的取值范围为()A.CB.D.三.解答题(本大题共5题,共14+14+14+16+18=76分)17.(12分)如图,长方体ABCD﹣A1B1C1D1中,AB=BC=2,AA1=3;精编WORD文档下载可编缉打印下载文档,远离加班熬夜(1)求四棱锥A1﹣ABCD的体积;(2)求异面直线A1C与DD1所成角的大小.18.(12分)设a∈R,函数数;(2)若;(1)求a的值,使得f(x)为奇函对任意x∈R成立,求a的取值范围.19.(12分)某景区欲建造两条圆形观景步道M1、M2(宽度忽略不计),如图所示,已知AB⊥AC,AB=AC=AD=60(单位:米),要求圆M1与AB、AD分别相切于点B、D,圆M2与AC、AD分别相切于点C、D;(1)若∠BAD=60°,求圆M1、M2的半径(结果精确到0.1米)(2)若观景步道M1与M2的造价分别为每米0.8千元与每米0.9千元,如何设计圆M1、M2的大小,使总造价最低?最低总造价是多少?(结果精确到0.1千元)20.(12分)已知双曲线(b>0),直线l:y=kx+m(km≠0),l与Γ交于P、Q两点,P'为P关于y轴的对称点,直线P'Q与y轴交于点N(0,n);(1)若点(2,0)是Γ的一个焦点,求Γ的渐近线方程;(2)若b=1,点P的坐标为(﹣1,0),且(3)若m=2,求n关于b的表达式.21.(12分)已知函数f(x)=log2;(1)解方程f(x)=1;∈(﹣1,1),且f(精编WORD文档下载可编缉打印下载文档,远离加班熬夜),,求k的值;(2)设x∈(﹣1,1),a∈(1,+∞),证明:﹣f(x)=﹣f();(3)设数列{xn}中,x1∈(﹣1,1),xn+1=(﹣1)n+1n∈N*,求x1的取值范围,使得x3≥xn对任意n∈N*成立.2021年上海市春季高考数学试卷参考答案与试题解析一.填空题(本大题共12题,满分48分,第1~6题每题4分,第7~12题每题5分)1.设集合A={1,2,3},集合B={3,4},则A∪B={1,2,3,4}.2.不等式|x﹣1|<3的解集为(﹣2,4).3.若复数z满足2﹣1=3+6i(i是虚数单位),则z=2﹣3i.4.若,则=.无解,则实数a=6.5.若关于x、y的方程组6.若等差数列{an}的前5项的和为25,则a1+a5=10.7.若P、Q是圆x2+y2﹣2x+4y+4=0上的动点,则|PQ|的最大值为2.8.已知数列{an}的通项公式为9.若160.10.设精编WORD文档下载可编缉打印下载文档,远离加班熬夜椭圆的左、右焦点分别为F1、F2,点P在该椭圆上,则使得△,则=.的二项展开式的各项系数之和为729,则该展开式中常数项的值为F1F2P是等腰三角形的点P的个数是6.11.设a1、a2、…、a6为1、2、3、4、5、6的一个排列,则满足|a1﹣a2|+|a3﹣a4|+|a5﹣a6|=3的不同排列的个数为48.12.设a、b∈R,若函数在区间(1,2)上有两个不同的零点,则f(1)的取值范围为(0,1).解:函数在区间(1,2)上有两个不同的零点,即方程x2+bx+a=0在区间(1,2)上两个不相等的实根,??,如图画出数对(a,b)所表示的区域,目标函数z=f(1)═a+b+1∴z的最小值为z=a+b+1过点(1,﹣2)时,z的最大值为z=a+b+1过点(4,﹣4)时∴f(1)的取值范围为(0,1)故答案为:(0,1)二.选择题(本大题共4题,每题5分,共20分)13.函数f(x)=(x﹣1)2的单调递增区间是(B)A.[0,+∞)精编WORD文档下载可编缉打印下载文档,远离加班熬夜B.[1,+∞)C.(﹣∞,0]D.(﹣∞,1]14.设a∈R,“a>0”是“”的(C)条件.A.充分非必要B.必要非充分C.充要D.既非充分也非必要15.过正方体中心的平面截正方体所得的截面中,不可能的图形是(A)A.三角形B.长方形C.对角线不相等的菱形D.六边形16.如图所示,正八边形A1A2A3A4A5A6A7A8的边长为2,若P为该正八边形边上的动点,则的取值范围为(B)篇二:2021年上海市高考数学试卷(理科)2021年上海市高考数学试卷(理科)参考答案与试题解析一.选择题(共4小题)21.(2021?上海)设a∈R,则“a>1”是“a>1”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分也非必要条件【考点】必要条件、充分条件与充要条件的判断.【专题】转化思想;定义法;简易逻辑.【分析】根据不等式的关系,结合充分条件和必要条件的定义进行判断即可.精编WORD文档下载可编缉打印下载文档,远离加班熬夜【解答】解:由a>1得a>1或a<﹣1,2即“a>1”是“a>1”的充分不必要条件,故选:A.【点评】本题主要考查充分条件和必要条件的判断,利用不等式的关系结合充分条件和必要条件的定义是解决本题的关键,比较基础.2.(2021?上海)下列极坐标方程中,对应的曲线为如图所示的是()2A.ρ=6+5cosθB.ρ=6+5sinθC.ρ=6﹣5cosθD.ρ=6﹣5sinθ【考点】简单曲线的极坐标方程.【专题】数形结合;转化思想;三角函数的求值;坐标系和参数方程.【分析】由图形可知:【解答】解:由图形可知:时,ρ取得最大值,即可判断出结论.时,ρ取得最大值,只有D满足上述条件.故选:D.【点评】本题考查了极坐标方程、数形结合方法、三角函数的单调性,考查了推理能力与计算能力,属于中档题.3.(2021?上海)已知无穷等比数列{an}的公比为q,前n精编WORD文档下载可编缉打印下载文档,远离加班熬夜项和为Sn,且条件中,使得2Sn<S(n∈N)恒成立的是()A.a1>0,0.6<q<0.7B.a1<0,﹣0.7<q<﹣0.6C.a1>0,0.7<q<0.8D.a1<0,﹣0.8<q<﹣0.7【考点】等比数列的前n项和.【专题】计算题;转化思想;综合法;等差数列与等比数列.【分析】由已知推导出*=S,下列,由此利用排除法能求出结果.【解答】解:∵2Sn<S,∴若a1>0,则若a1<0,则qn,S==,﹣1<q<1,,,故A与C不可能成立;,故B成立,D不成立.故选:B.【点评】本题考查命题真假的判断,是基础题,解题时要认真审题,注意等比数列的性质的合理运用.4.(2021?上海)设f(x)、g(x)、h(x)是定义域为R的三个函数,对于命题:①f(x)+g(x)、f(x)+h(x)、g(x)+h(x)均为增函数,则f(x)、g(x)、h(x)中至少有一个增函数;②若f(x)+g(x)、f(x)+h(x)、g(x)+h(x)均是以T为周期的函数,则f(x)、g(x)、h(x)均是以T为周期的函数,下列判断正确的是()精编WORD文档下载可编缉打印下载文档,远离加班熬夜A.①和②均为真命题B.①和②均为假命题C.①为真命题,②为假命题D.①为假命题,②为真命题【考点】命题的真假判断与应用.【专题】分类讨论;转化思想;函数的性质及应用;简易逻辑.【分析】①不成立.可举反例:f(x)=.g(x)=,h(x)=.②由题意可得:f(x)+g(x)=f(x+T)+g(x+T),f(x)+h(x)=f(x+T)+h(x+T),h(x)+g(x)=h(x+T)+g(x+T),可得:g(x)=g(x+T),h(x)=h(x+T),f(x)=f(x+T),即可判断出真假.【解答】解:①不成立.可举反例:f(x)=.g(x)=,h(x)=.②∵f(x)+g(x)=f(x+T)+g(x+T),f(x)+h(x)=f(x+T)+h(x+T),h(x)+g(x)=h(x+T)+g(x+T),前两式作差可得:g(x)﹣h(x)=g(x+T)﹣h(x+T),结合第三式可得:g(x)=g(x+T),h(x)=h(x+T),同理可得:f(x)=f(x+T),因此②正确.故选:D.【点评】本题考查了函数的单调性与周期性、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.二.填空题(共14小题)5.(2021?上海)设x∈R,则不等式|x﹣3|<1的解集为精编WORD文档下载可编缉打印下载文档,远离加班熬夜【考点】绝对值不等式.【专题】计算题;转化思想;综合法;不等式的解法及应用.【分析】由含绝对值的性质得﹣1<x﹣3<1,由此能求出不等式|x﹣3|<1的解集.【解答】解:∵x∈R,不等式|x﹣3|<1,∴﹣1<x﹣3<1,解得2<x<4.∴不等式|x﹣3|<1的解集为(2,4).故答案为:(2,4).【点评】本题考查含绝对值不等式的解法,是基础题,解题时要认真审题,注意含绝对值不等式的性质的合理运用.6.(2021?上海)设z=,其中i为虚数单位,则Imz=.【考点】复数代数形式的乘除运算.【专题】计算题;转化思想;综合法;数系的扩充和复数.【分析】利用复数代数形式的乘除运算法则,先求出复数z的最简形式,由此能求出Imz.【解答】解:∵Z====2﹣3i,∴Imz=﹣3.故答案为:﹣3.【点评】本题考查复数的虚部的求法,是基础题,解题时要认真审题,注意复数的乘除运算法则的合理运用.7.(2021?上海)已知平行直线l1:2x+y﹣1=0,l2:2x+y+1=0,精编WORD文档下载可编缉打印下载文档,远离加班熬夜则l1,l2的距离【考点】两条平行直线间的距离.【专题】计算题;规律型;直线与圆.【分析】直接利用平行线之间的距离公式求解即可.【解答】解:平行直线l1:2x+y﹣1=0,l2:2x+y+1=0,则l1,l2的距离:=..故答案为:.【点评】本题考查平行线之间的距离公式的应用,考查计算能力.8.(2021?上海)某次体检,6位同学的身高(单位:米)分别为1.72,1.78,1.75,1.80,1.69,1.77,则这组数据的中位数是(米).【考点】众数、中位数、平均数.【专题】计算题;转化思想;定义法;概率与统计.【分析】先把这组数据按从小到大排列,求出位于中间的两个数值的平均数,得到这组数据的中位数.【解答】解:∵6位同学的身高(单位:米)分别为1.72,1.78,1.75,1
本文标题:2021年上海高考数学(理科)试卷【A3大小】
链接地址:https://www.777doc.com/doc-8030974 .html