您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 上海市虹口区2019届高三数学二模试题(含解析)
上海市虹口区2019届高三数学二模试题(含解析)一.填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1.设全集,若,则________【答案】【解析】【分析】先化简集合A,再利用补集定义直接求解.【详解】∵全集U=R,集合A={x||x﹣3|>1}={x|x>4或x<2),∴∁UA={x|2≤x≤4}=[2,4]故答案为:[2,4]【点睛】本题考查补集的求法,考查补集定义、不等式的解法等基础知识,考查运算求解能力,是基础题.2.若复数(为虚数单位),则的共轭复数________【答案】【解析】【分析】利用复数代数形式的乘除运算化简,再由共轭复数的概念得答案.【详解】由z=i(2﹣i)=1+2i,得.故答案为:1﹣2i.【点睛】本题考查复数代数形式的乘除运算,考查共轭复数的基本概念,是基础题.3.已知,在第四象限,则________【答案】【解析】【分析】利用同角三角函数的基本关系及诱导公式,求得的值.【详解】∵cosθ,且θ是第四象限角,则sinθ,又sinθ=,故答案为.【点睛】本题主要考查同角三角函数的基本关系式及诱导公式的应用,考查了三角函数在各个象限中的符号,属于基础题.4.行列式的元素的代数余子式的值等于________【答案】7【解析】【分析】利用代数余子式的定义和性质直接求解.【详解】行列式的元素π的代数余子式的值为:(﹣1)2+1(4cos9sin)=﹣(2﹣9)=7.故答案为:7.【点睛】本题考查行列式的元素的代数余子式的值的求法,考查代数余子式的定义和性质等基础知识,考查运算求解能力,是基础题.5.5位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为________【答案】【解析】【分析】设A={周六、周日都有同学参加公益活动},计算出事件A包含的基本事件的个数,除以基本事件的总数可得.【详解】设A={周六、周日都有同学参加公益活动},基本事件的总数为25=32个,而5人都选同一天包含2种基本事件,故A包含32﹣2=30个基本事件,∴p(A).故填:.【点睛】本题考查古典概型的概率计算,考查了利用对立事件来求事件A包含的基本事件的方法,属于基础题.6.已知、是椭圆的两个焦点,点为椭圆上的点,,若为线段的中点,则线段的长为________【答案】2【解析】【分析】求出椭圆的焦点坐标,利用椭圆的定义转化求解即可.【详解】F1、F2是椭圆的两个焦点,可得F1(﹣3,0),F2(3,0).a=6.点P为椭圆C上的点,|PF1|=8,则|PF2|=4,M为线段PF1的中点,则线段OM的长为:|PF2|=2.故答案为:2.【点睛】本题考查椭圆的的定义及简单性质的应用,是基本知识的考查.7.若函数()有3个零点,则实数的取值范围是________【答案】【解析】【分析】利用数形结合,通过a与0的大小讨论,转化求解a的范围即可.【详解】函数f(x)=x|x﹣a|﹣4有三个不同的零点,就是x|x﹣a|=4有三个不同的根;当a>0时,函数y=x|x﹣a|与y=4的图象如图:函数f(x)=x|x﹣a|﹣4(a∈R)有3个零点,必须,解得a>4;当a≤0时,函数y=x|x﹣a|与y=4的图象如图:函数f(x)=x|x﹣a|﹣4不可能有三个不同的零点,综上a∈(4,+∞).故答案为:(4,+∞).【点睛】本题考查函数与方程的综合应用,考查数形结合以及分类讨论思想的应用,考查计算能力.8.若函数()为偶函数,则的值为________【答案】【解析】【分析】根据题意,由函数奇偶性的定义可得f(﹣x)=f(x),即log3(9x+1)+kx=log3(9﹣x+1)+k(﹣x),变形可得k的值,即可得答案.【详解】根据题意,函数(k∈R)为偶函数,则有f(﹣x)=f(x),即log3(9x+1)+kx=log3(9﹣x+1)+k(﹣x),变形可得:2kx=log3(9﹣x+1)﹣log3(9x+1)=﹣2x,则有k=﹣1;故答案为:﹣1【点睛】本题考查函数的奇偶性的应用以及对数的运算性质,关键是掌握函数奇偶性的定义,属于基础题.9.一个几何体的三视图如图所示,则该几何体的体积为________【答案】【解析】【分析】由已知中的三视图可得该几何体是一个以俯视图为底面的三棱锥,由三视图的数据可分析出底面的底和高及棱锥的高,代入棱锥体积公式,可得答案.【详解】由已知中的三视图可得该几何体是一个以俯视图为底面的三棱锥,如图:由三视图可知:底面的底和高均为2,棱锥的高为2,故底面S2×2故棱锥的体积VSh2,故答案为.【点睛】本题考查的知识点是由三视图求体积,其中由已知中的三视图判断出几何体的形状,及棱长,高等几何量是解答的关键.10.在平面直角坐标系中,边长为1的正六边形的中心为坐标原点,如图所示,双曲线是以、为焦点的,且经过正六边形的顶点、、、,则双曲线的方程为________【答案】【解析】【分析】求出B的坐标,代入双曲线方程,结合焦距,求出a,b即可得到双曲线方程.【详解】由题意可得c=1,边长为1的正六边形ABCDEF的中心为坐标原点O,如图所示,双曲线Γ是以C、F为焦点的,且经过正六边形的顶点A、B、D、E,可得B(,),代入双曲线方程可得:,a2+b2=1,解得a2,b2,所求双曲线的方程为:.故答案为:.【点睛】本题考查双曲线的简单性质的应用以及双曲线方程的求法,是基本知识的考查.11.若函数,则的值为________【答案】【解析】【分析】根据题意,由函数的解析式求出f(0)与f(﹣1)的值,据此依次求出f(1)、f(2)、f(3)的值,分析可得f(x)=f(x+6),(x0),据此可得f(2019)=f(3+336×6)=f(3),即可得答案.【详解】根据题意,函数,当x≤0时,f(x)=2﹣x,则f(0)=20=1,f(﹣1)=2﹣1=2,当x>0时,f(x)=f(x﹣1)﹣f(x﹣2),①f(x+1)=f(x)﹣f(x﹣1),②①+②得f(x+1)=﹣f(x﹣2),∴f(x+4)=﹣f(x+1)=f(x﹣2),即f(x+6)=f(x),,又f(2019)=f(3+336×6)=f(3)而f(1)=f(0)﹣f(﹣1)=1﹣2=﹣1,f(2)=f(1)﹣f(0)=﹣1﹣1=﹣2,f(3)=f(2)﹣f(1)=﹣2﹣(﹣1)=﹣1,∴f(2019)=f(3+336×6)=f(3)=﹣1;故答案为:﹣1.【点睛】本题考查分段函数值的计算,考查了周期性的推导与应用,属于中档题.12.过点作圆()的切线,切点分别为、,则的最小值为________【答案】【解析】【分析】根据圆心到点P的距离以及平面向量的数量积定义,求出PC的最小值,计算再计算的最小值.【详解】圆C:(xm)2+(y﹣m+1)2=1的圆心坐标为(m,m﹣1),半径为1,∴PC,PA=PB,cos∠APC,∴cos∠APB=2()2﹣1=1,∴•(PC2﹣1)×(1)=﹣3+PC23+23+2,当且仅当PC时取等号,∴的最小值为23.故答案为:23.【点睛】本题考查了平面向量的数量积的定义及基本不等式求最值问题,考查了直线与圆的位置关系应用问题,是中档题.二.选择题(本大题共4题,每题5分,共20分)13.已知、是两个不同平面,为内的一条直线,则“∥”是“∥”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B【解析】【分析】m∥β不一定得到直线与平面平行,由此可判断不充分,由面面平行的定义及性质可判断必要性.【详解】α、β表示两个不同的平面,直线m⊂α,m∥β,不一定得到直线与平面平行,还有一种情况可能是直线和平面相交,∴不满足充分性;当两个平面平行时,由面面平行的定义及性质可知:其中一个平面上的直线一定平行于另一个平面,一定存在m∥β,∴满足必要性,∴“m∥β”是“α∥β”的必要不充分条件故选:B.【点睛】本题考查充分必要条件的判断和线面、面面平行的定义及性质的应用,解题的关键是熟练掌握平面与平面平行的判定与性质定理,是一个基础题.14.钝角三角形的面积是,,,则等于()A.1B.2C.D.5【答案】C【解析】【分析】由三角形的面积公式求得角B,再由余弦定理求得AC的值.【详解】由题意,钝角△ABC的面积是S•AB•BC•sinB1sinBsinB,∴sinB,∴B或(不合题意,舍去);∴cosB,由余弦定理得:AC2=AB2+CB2﹣2AB•CB•cosB=1+2﹣2×1()=5,解得AC的值为.故选:C.【点睛】本题考查了三角形的面积公式和余弦定理的应用问题,是基础题.15.已知直线经过不等式组表示的平面区域,且与圆相交于、两点,则当最小时,直线的方程为()A.B.C.D.【答案】D【解析】【分析】画出不等式组表示的区域,过点P的直线l与圆C:x2+y2=16相交于A、B两点,则|AB|的最小值时,区域内的点到原点(0,0)的距离最大.由此可得结论.【详解】不等式组表示的区域如图阴影部分,其中AB的中点为P,则AP⊥OP,所以|OP|最长时,AB最小,因为最小l经过可行域,由图形可知点P为直线x﹣2y+1=0与y﹣2=0的交点(3,2)时,|OP|最长,因为kOP,则直线l的方程为:y﹣2(x﹣4),即.故选:D.【点睛】本题考查线性规划知识,考查学生分析解决问题的能力,解题的关键是|AB|的最小值时,区域内的点到原点(0,0)的距离最大.16.已知等比数列的首项为2,公比为,其前项和记为,若对任意的,均有恒成立,则的最小值为()A.B.C.D.【答案】B【解析】【分析】Sn•,①n为奇数时,Sn•,根据单调性可得:Sn≤2;②n为偶数时,Sn•,根据单调性可得:≤Sn.可得Sn的最大值与最小值分别为:2,.考虑到函数y=3t在(0,+∞)上单调递增,即可得出.【详解】Sn•,①n为奇数时,Sn•,可知:Sn单调递减,且•,∴Sn≤S1=2;②n为偶数时,Sn•,可知:Sn单调递增,且•,∴S2≤Sn.∴Sn的最大值与最小值分别为:2,.考虑到函数y=3t在(0,+∞)上单调递增,∴A.B.∴B﹣A的最小值.故选:B.【点睛】本题考查了等比数列的求和公式及数列单调性的判断和应用问题,考查了恒成立问题的转化,考查了推理能力与计算能力,属于中档题.三.解答题(本大题共5题,共14+14+14+16+18=76分)17.已知函数(,).(1)若函数的反函数是其本身,求的值;(2)当时,求函数的最小值.【答案】(1);(2)【解析】【分析】(1)由互为反函数的函数定义域和值域互换得反函数解析式.(2)得到解析式后根据基本不等式求最小值.【详解】(1)由题意知函数f(x)的反函数是其本身,所以f(x)的反函数ay=9﹣3x,x=,反函数为y=,所以a=3.(2)当时,f(x)=,f(﹣x)=,则y=f(x)+f(﹣x)=﹣3,故最小值为﹣3.【点睛】本题考查了反函数和基本不等式的应用,属于简单题.18.如图,在多面体中,、、均垂直于平面,,,,.(1)求与平面所成角的大小;(2)求二面角的大小.【答案】(1);(2)【解析】【分析】由题意建立空间直角坐标系.(1)由已知分别求出的坐标与平面A1B1C1的一个法向量,则线面角可求;(2)求出平面AA1B1的一个法向量,结合(1),由两法向量所成角的余弦值可得二面角A﹣A1B1﹣C1的大小.【详解】由题意建立如图所示空间直角坐标系,∵AA1=4,CC1=3,BB1=AB=AC=2,∠BAC=120°,∴A(0,0,0),A1(0,0,4),B1(,﹣1,2),C1(0,2,3).(1),,,设平面A1B1C1的一个法向量为,由,取y=1,得.∴AB1与A1B1C1所成角的最小值sinθ=|cos|.∴AB1与A1B1C1所成角的大小为;(2)设平面AA1B1的一个法向量为,由,取x1=1,得.∴cos.∴二面角A﹣A1B1﹣C1的大小为.【点睛】本题考查利用空间向量法求解空间角,考查计算能力,是中档题.19.如图,一
本文标题:上海市虹口区2019届高三数学二模试题(含解析)
链接地址:https://www.777doc.com/doc-8032668 .html