您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 《经济数学基础12》作业讲解(一)
精编WORD文档下载可编缉打印下载文档,远离加班熬夜《经济数学基础12》作业讲解(一)篇一:《经济数学基础12》作业经济数学基础形成性考核册专业:工商管理学号:1513001400168姓名:王浩河北广播电视大学开放教育学院(请按照顺序打印,并左侧装订)作业一(一)填空题1.limx?0x?sinx?___________________.答案:0x?x2?1,x?02.设f(x)??,在x?0处连续,则k?________.答案:1?k,x?0?3.曲线y?x+1在(1,2)的切线方程是答案:y?11x?22__.答案:2x4.设函数f(x?1)?x2?2x?5,则f?(x)?__________5.设f(x)?xsinx,则f??()?__________.答案:?π2π2(二)单项选择题1.当x???时,下列变量为无穷小量的是()答案:Dx2精编WORD文档下载可编缉打印下载文档,远离加班熬夜A.ln(1?x)B.x?1C.e?1xD.sinxx2.下列极限计算正确的是()答案:BA.limx?0xx?1B.lim?x?0xx?1C.limxsinx?01sinx?1D.lim?1x??xx3.设y?lg2x,则dy?().答案:BA.11ln101dxB.dxC.dxD.dx2xxln10xx4.若函数f(x)在点x0处可导,则()是错误的.答案:BA.函数f(x)在点x0处有定义B.limf(x)?A,但A?f(x0)x?x0C.函数f(x)在点x0处连续D.函数f(x)在点x0处可微5.若f()?x,f?(x)?().答案:BA.1x1111??B.C.D.xxx2x2(三)解答题1.计算极限x2?3x?21x2?5x?61??(2)lim2?(1)limx?1x?2x?6x?822x2?12x2?3x?51?x?11?(3)lim??(4)lim2x??x?0x23x?2x?43sin3x3x2?4?(6)lim(5)lim?4x?0sin5xx?25sin(x?2)1?xsin?b,x?0?x?2.设函数f(x)??a,x?0,?sinxx?0?x?问:(1)当a,b为何值时,f(x)在x?0处有极限存在?精编WORD文档下载可编缉打印下载文档,远离加班熬夜(2)当a,b为何值时,f(x)在x?0处连续.答案:(1)当b?1,a任意时,f(x)在x?0处有极限存在;(2)当a?b?1时,f(x)在x?0处连续。3.计算下列函数的导数或微分:(1)y?x?2?log2x?2,求y?答案:y??2x?2ln2?(2)y?x2x21xln2ax?b,求y?cx?d答案:y??ad?cb2(cx?d)13x?5,求y?(3)y?答案:y???32(3x?5)3(4)y?答案:y??x?xex,求y?12x?(x?1)ex(5)y?eaxsinbx,求dy答案:dy?eax(asinbx?bcosbx)dx(6)y?e?xx,求dy1x112ex)dx答案:dy?x(7)y?cosx?e?x,求dy精编WORD文档下载可编缉打印下载文档,远离加班熬夜答案:dy?(2xe?x?22sinx2x)dx(8)y?sinnx?sinnx,求y?答案:y??n(sinn?1xcosx?cosnx)(9)y?ln(x??x2),求y?答案:y??1?xsin1x2(10)y?2,求y?1x答案:y???2sinln2x211?31?52cos?x?x6x264.下列各方程中y是x的隐函数,试求y?或dy(1)x?y?xy?3x?1,求dy答案:dy?22y?3?2xdx2y?xxy(2)sin(x?y)?e?4x,求y?4?yexy?cos(x?y)答案:y??xexy?cos(x?y)5.求下列函数的二阶导数:(1)y?ln(1?x2),求y??2?2x2答案:y???22(1?x)(2)y?1?xx,求y??及y??(1)3?21?2答案:y???x?x,y??(1)?14453精编WORD文档下载可编缉打印下载文档,远离加班熬夜作业2一、填空题1、若∫f(x)dx=2x+2x+c,则x2、∫(sinx)'3、若∫f(x)dx=F(x)+c,则∫xf(1-x22de2ln(x?1)dx?0.4、?1dx5、若P?x???01xdt,,则P'?x??篇二:《经济数学基础12》作业讲解(四)经济数学基础作业讲解(四)一、填空题1.函数f(x)??1ln(x?1)的定义域为______________.?4?x?0,解:?解之得1?x?4,x?2x?1?0,x?2,?答案:(1,2)?(2,4]2.函数y?3(x?1)2的驻点是________,极值点是值点.解:令y??6(x?1)?0,得驻点为x?1,又y???6?0,故x?1为极小值点答案:x?1,x?1,小精编WORD文档下载可编缉打印下载文档,远离加班熬夜3.设某商品的需求函数为q(p)?10e解:Ep?12?p2,则需求弹性Ep?.pdqqdpp?p10e?p2?10e?p2p?1??????22??答案:??x1?x2?04.若线性方程组?有非零解,则??____________.x??x?0?12解:令|A|?答案:?1?1?精编WORD文档下载可编缉打印下载文档,远离加班熬夜???1?0,得???1?1?5.设线性方程组AX?b,且A?0???01?1013t?16??2,则t__________?0??时,方程组有唯一解.解:当r(A)?r(A)?3时,方程组有唯一解,故t??1答案:??1二、单项选择题1.下列函数在指定区间(??,??)上单调增加的是().A.sinxB.exC.x2D.3–x解:因为在区间(??,??)上,(e)??e?0,所以y?e区间(??,??)上单调增加xxx精编WORD文档下载可编缉打印下载文档,远离加班熬夜答案:B2.设f(x)?A.1x1x,则f(f(x))?().1x2B.1f(x)C.xD.x211x?x解:f(f(x))??答案:C3.下列积分计算正确的是().A.?1e?e2x?x?1dx?0B.?1e?e2精编WORD文档下载可编缉打印下载文档,远离加班熬夜x?x?1dx?0C.?xsinxdx?0D.?(x2?x3)dx?0-1-111解:因为f(x)?答案:Ae?e2x?x是奇函数,所以?1e?e2x?x?1dx?04.设线性方程组Am?nX?b有无穷多解的充分必要条件是().A.r(A)?r(A)?mB.r(A)?nC.m?nD.r(A)?r(A)?n解:当r(A)?r(A)?n时,线性方程组Am?nX?b才有无穷多解,反之亦然答案:Dx1?x2?a1??精编WORD文档下载可编缉打印下载文档,远离加班熬夜5.设线性方程组?x2?x3?a2,则方程组有解的充分必要条件是().?x?2x?x?a233?1A.a1?a2?a3?0B.a1?a2?a3?0C.a1?a2?a3?0D.?a1?a2?a3?0?1?解:A??0?1?112011a1??1??a2?0????0a3??111011??1??a2?0????0a3?a1??a1110010??a2精编WORD文档下载可编缉打印下载文档,远离加班熬夜?,a3?a1?a2??a1则方程组有解的充分必要条件是r(A)?r(A),即a3?a1?a2?0答案:C三、解答题1.求解下列可分离变量的微分方程:(1)y??ex?y?yx解:分离变量得edy?edx,积分得?e?ydy??exdx,所求通解为?e?y?ex?c.(2)dydx?xe3yx2精编WORD文档下载可编缉打印下载文档,远离加班熬夜解:分离变量得3y2dy?积分得,xedxx?3ydy?2?,xxedx所求通解为y3?xex?ex?c.2.求解下列一阶线性微分方程:(1)y??2x?1y?(x?1)322???x?1dx??x?1dx3(x?1)edx?c解:y?e?????2?(x?1)??(x?1)dx?c???2?(x?1)(12精编WORD文档下载可编缉打印下载文档,远离加班熬夜x?x?c).2(2)y??yx?2xsin2x11???xdx??xdx2xsin2xedx?c解:y?e??????x??2sin2xdx?c????x(?cos2x?c).3.求解下列微分方程的初值问题:(1)y??e2x?y,y(0)?0y2x解:分离变量得edy?edx,积分得通解e?y12e?c,12x代入初始条件y(0)?0得c?所求特解为e?精编WORD文档下载可编缉打印下载文档,远离加班熬夜xy,12e?x12.(2)xy??y?e?0,y(1)?0解:y??1xy?exx,11x?11x?xdx?e?xdxx??通解为y?eedx?c?edx?c?(e?c),??????x?x??x代入初始条件y(1)?0得c??e,所求特解为y?1x精编WORD文档下载可编缉打印下载文档,远离加班熬夜x(e?e).4.求解下列线性方程组的一般解:?x?2x3?x4?0(1)?1??x1?x2?3x3?2x4?0??2x1?x2?5x3?3x4?0?102?1??102?1??102解:A????11?32?????01?11?????01?1??2?15?3????0?11?1????0所以,方程的一般解为?x1??2x3?x?4精编WORD文档下载可编缉打印下载文档,远离加班熬夜?x(其中x1,x2是自由未知量).2?x3?x4?2x1?x2?x3?x4?1(2)??x1?2x2?x3?4x4?2??x1?7x2?4x3?11x4?5?2?1111??12?142?解:A???12?142??7?3?????0?53??17?4115?????05?373???12?142??101/56/54/5????01?3/57/53/5????01?3/57/53/5???000??????000??所以,方程的一般解为??x1??1?5x643?5x4?5(其中x,x??精编WORD文档下载可编缉打印下载文档,远离加班熬夜x37334是自由未知量).2?5x3?5x4?55.当?为何值时,线性方程组?1?1??0???x1?x2?5x3?4x4?2??2x1?x2?3x3?x4?1??3x1?2x2?2x3?3x4?3?7x1?5x2?9x3?10x4???有解,并求一般解.解:?1?2?A??3??7?1?1?2?5?53?2?94?13102??1??10????03??????0?1112?51313264?9?9?18??1???30????0?3?????14??02精编WORD文档下载可编缉打印下载文档,远离加班熬夜010081300?5?900?1???3?0????8?当??8时,r(A)?r(A)?2?4,方程组有无穷多解.所以,方程的一般解为?x1??8x3?5x4?1?(其中x3,x4是自由未知量).?x2??13x3?9x4?36.a,b为何值时,方程组?x1?x2?x3?1??x1?x2?2x3?2?x?3x?ax?b23?1无解,有唯一解,有无穷多解??1?解:A??1?1??113?1?2a1??1??2?0????0b???124?1?1a?1精编WORD文档下载可编缉打印下载文档,远离加班熬夜1??1??1?0????0b?1???120?1?1a?31??1,?b?3??当a??3且b?3时,方程组无解;当a??3时,方程组有唯一解;当a??3且b?3时,方程组无穷多解.7.求解下列经济应用问题:(1)设生产某种产品q个单位时的成本函数为:C(q)?100?0.25q?6q(万元),求:①当q?10时的总成本、平均成本和边际成本;②当产量q为多少时,平均成本最小?解:①C(10)?185(万元)C(10)?18.5(万元/单位)C?(q)?0.5q?6,C?(10)?11(万元/单位)2篇三:《经济数学基础12》作业讲解(二)经济数学基础作业讲解(二)一、填
本文标题:《经济数学基础12》作业讲解(一)
链接地址:https://www.777doc.com/doc-8035891 .html