您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 2020年甘肃省高考数学二诊试卷(文科)含答案解析
2020年甘肃省高考数学二诊试卷(文科)一、选择题:本大题共12题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合M={0,2a},N={a,b},若M∩N={2},则M∪N=()A.{0,2,3}B.{1,2,3}C.{0,1,2}D.{0,1,3}2.复数(i是虚数单位)的模等于()A.B.10C.D.53.已知{an}是等比数列,a3,a8是关于x的方程x2﹣2xsinα﹣sinα=0的两根,且(a3+a8)2=2a2a9+6,则锐角α的值为()A.B.C.D.4.已知x,y满足约束条件,则z=﹣2x+y的最大值是()A.﹣1B.﹣2C.﹣5D.15.已知=,则sin2α的值为()A.B.C.D.6.执行如图所示的程序框图,输出的n为()A.2B.3C.4D.57.已知△ABC的外接圆半径为1,圆心为O,且=0,则△ABC的面积为()A.1+B.+C.1+D.8.已知数列{an}为等差数列,公差d=﹣2,Sn为其前n项的和.若S10=S12,则a1=()A.19B.20C.21D.229.若﹣<θ<0,且P=3cosθ,Q=(cosθ)3,R=,则P,Q,R的大小关系为()A.R<Q<PB.Q<R<PC.P<Q<RD.R<P<Q10.如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是一几何体的三视图,则该几何体的表面积为()A.64+24πcm2B.64+36πcm2C.48+36πcm2D.48+24πcm211.设函数f(x)=,则使得f(2x)>f(x﹣3)成立的x的取值范围是()A.(﹣3,1)B.(﹣∞,﹣3)∪(1,+∞)C.(﹣3,+∞)D.(﹣∞,1)12.若函数f(x)=x3﹣(4+log2a)x+2在(0,2]上有两个零点,则实数a的取值范围是()A.B.(,2]C.[1,4)D.[2,8)二、填空题:本大题共4小题,每小题5分,共20分.13.甲、乙两名同学分别报名参加足球、篮球、排球活动中的一项,则他们参加项目不同的概率是______.14.在平面直角坐标系xOy中,以点(1,0)为圆心,且与直线x﹣y﹣3=0相切的圆的标准方程为______.15.在直三棱柱ABC﹣A1B1C1中,BC=4,∠BAC=90°,AA1=2,则此三棱柱外接球的表面积为______.16.已知点A(4,0),抛物线C:x2=12y的焦点为F,射线FA与抛物线C相交于点M,与其准线相交于点N,则|FM|:|MN|=______.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.在△ABC中,内角A,B,C的对边分别为a,b,c,向量=(2sinA,),=(2cos2﹣1,cos2A),且⊥.(Ⅰ)求锐角A的大小;(Ⅱ)如果b=2,c=6,AD⊥BC于D,求AD的长.18.PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也可称为可入肺颗粒物,我国规定PM2.5的数值在0~50ug/m2为空气质量一等,甲、乙两城市现参加全国“空气质量优秀城市”评选,下表是2011至2020年甲乙两市空气质量一等天数的记录(单位:天):2011年2020年2020年2020年2020年甲8677927278乙7882888295(Ⅰ)画出茎叶图表示这两组数据;(Ⅱ)现要从中选出一个城市为“空气质量优秀城市”,你认为选谁更好?说明理由(不用计算);(Ⅲ)若从甲、乙两市的2020至2020年这三年记录中各随机抽取一年的数据,求空气质量一等天数甲市比乙市多的概率.19.如图,在四棱柱ABCD﹣A1B1C1D1中,AB∥CD,AB⊥AD,AB=4,AD=2,CD=2,AA1=2,侧棱AA1⊥底面ABCD,E是A1D上一点,且A1E=2ED.(1)求证:EO∥平面A1ABB1;(2)求直线A1B与平面A1ACC1所成角的正弦值.20.以F1(﹣2,0),F2(2,0)为焦点的椭圆C:+=1(a>b>0)经过点A(2,3).(1)求椭圆C的方程;(2)过原点的直线l交椭圆C于M、N两点,P为椭圆C上的点,且与M、N不关于坐标轴对称,设直线MP、NP的斜率分别为k1,k2,试问:k1,k2的乘积是否为定值?若是,求出该定值,若不是,请说明理由.21.已知函数f(x)=x2lnx+ax(a∈R)(Ⅰ)求函数f(x)的图象在点(1,f(1))处的切线在y轴上的截距;(Ⅱ)对于任意的x0>0,记函数f(x)的图象在点(x0,f(x0))处的切线在y轴上的截距为g(x0),求g(x0)的最大值.请从下面所给的22、23、24三题中选定一题作答,并用2B铅笔在答题卡上将所选题号对应的题号方框涂黑,按所涂题号进行评分;不涂、多涂均按所答第一题评分;多答按所答第一题评分.[选修4-1:几何证明选讲]22.如图,在等边△ABC中,点D,E分别在边AC,AB上,且AD:DC=1:2,AE:AB=2:3,BD与CE相交于点F.(Ⅰ)证明:A,B,C,D四点共圆;(Ⅱ)若BC=2,求△AEF外接圆的半径.[选修4-4:极坐标与参数方程]23.在直角坐标系xOy中,曲线M的参数方程为,(α为参数),α∈[0,π].若以该直角坐标系的原点O为极点,x轴的正半轴为极轴,建立极坐标系,曲线N的极坐标方程为ρsin(θ+)=m(其中m为常数)(Ⅰ)求曲线M与曲线N的普通方程;(Ⅱ)若曲线M与曲线N有两个公共点,求m的取值范围.[选修4-5:不等式选讲]24.(Ⅰ)求不等式|2x﹣4|+|x+1|≥5解集;(Ⅱ)已知a,b为正数,若直线(a﹣1)x+2y+6=0与直线2x+by﹣5=0互相垂直,求证:≥8.2020年甘肃省高考数学二诊试卷(文科)参考答案与试题解析一、选择题:本大题共12题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合M={0,2a},N={a,b},若M∩N={2},则M∪N=()A.{0,2,3}B.{1,2,3}C.{0,1,2}D.{0,1,3}【考点】并集及其运算.【分析】根据交集关系求出a,b,即可得到结论.【解答】解:∵M={0,2a},N={a,b},若M∩N={2},∴2a=2,即a=1,则N={1,b},则b=2,即N={1,2},则M∪N={0,1,2},故选:C2.复数(i是虚数单位)的模等于()A.B.10C.D.5【考点】复数代数形式的乘除运算.【分析】首先将复数化简为a+bi的形式,然后求模.【解答】解:=1+=3+i,故模为;故选:A.3.已知{an}是等比数列,a3,a8是关于x的方程x2﹣2xsinα﹣sinα=0的两根,且(a3+a8)2=2a2a9+6,则锐角α的值为()A.B.C.D.【考点】数列与函数的综合;等比数列的性质.【分析】由已知条件推导出a3+a8=2sinα,a3•a8=a2a9=﹣2,由(a3+a8)2=2a2a9+6,能求出锐角α的值.【解答】解:∵{an}是等比数列,a3和a8是关于x的方程x2﹣2xsinα﹣2=0的两根,∴a3+a8=2sinα,a3•a8=a2a9=﹣sinα,∵(a3+a8)2=2a2a9+6,∴4sin2α=﹣2+6,即sinα=,或sinα=﹣(舍),∴锐角α的值为.故选:C.4.已知x,y满足约束条件,则z=﹣2x+y的最大值是()A.﹣1B.﹣2C.﹣5D.1【考点】简单线性规划.【分析】首先画出平面区域,z=﹣2x+y的最大值就是y=2x+z在y轴的截距的最大值.【解答】解:由已知不等式组表示的平面区域如图阴影部分,当直线y=2x+z经过A时使得z最大,由得到A(1,1),所以z的最大值为﹣2×1+1=﹣1;故选:A.5.已知=,则sin2α的值为()A.B.C.D.【考点】二倍角的正弦.【分析】由条件利用诱导公式、二倍角的余弦公式,求得sin2α的值.【解答】解:∵=,∴sin2α=﹣cos(+2α)=﹣[1﹣2]=﹣[1﹣2•]=﹣,故选:C.6.执行如图所示的程序框图,输出的n为()A.2B.3C.4D.5【考点】程序框图.【分析】模拟程序框图的运行过程,得出S≥2时终止循环,写出输出n的值即可.【解答】解:模拟程序框图的运行过程,如下;n=1,S=0,S<2,S=0+sin=,n=2;S<2,S=+sin=+,n=3;S<2,S=++sin=+,n=4;S≥2,终止循环,输出n=4.故选:C.7.已知△ABC的外接圆半径为1,圆心为O,且=0,则△ABC的面积为()A.1+B.+C.1+D.【考点】向量在几何中的应用.【分析】由条件得.两边平方计算,得出∠AOB.从而得出∠AOC,∠BOC,分别计算三个小三角形的面积即可.【解答】解:∵△ABC的外接圆半径为1,圆心为O,∴OA=OB=OC=1.∵=,∴.∴,即1+1+2=2.∴.∴,即∠AOB=90°,∴∠AOC=∠BOC=135°,∴S△ABC=S△AOB+S△AOC+S△BOC=++=.故选D.8.已知数列{an}为等差数列,公差d=﹣2,Sn为其前n项的和.若S10=S12,则a1=()A.19B.20C.21D.22【考点】等差数列的前n项和.【分析】利用等差数列的前n项和公式即可得出.【解答】解:∵S10=S12,∴10a1+×(﹣2)=12a1+×(﹣2),化为:2a1=42,则a1=21.故选:C.9.若﹣<θ<0,且P=3cosθ,Q=(cosθ)3,R=,则P,Q,R的大小关系为()A.R<Q<PB.Q<R<PC.P<Q<RD.R<P<Q【考点】三角函数线.【分析】判断三个数的范围,即可比较大小.【解答】解:﹣<θ<0,cosθ∈(0,1)且P=3cosθ>1,Q=(cosθ)3∈(0,1);R=∈(0,1).(cosθ)3<,可得:Q<R<P.故选:B.10.如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是一几何体的三视图,则该几何体的表面积为()A.64+24πcm2B.64+36πcm2C.48+36πcm2D.48+24πcm2【考点】由三视图求面积、体积.【分析】由三视图知该几何体是组合体:上面是圆锥、下面是正方体,由三视图求出几何元素的长度,由圆锥的表面积公式、矩形面积公式求出各个面的面积,加起来求出几何体的表面积.【解答】解:根据三视图可知几何体是组合体:上面是圆锥、下面是正方体,且圆锥的底面圆的半径是4、高为3,则母线长=5,正方体的棱长是4,∴该几何体的表面积S=5×4×4+π×42﹣4×4+π×4×5=64+36π(cm2),故选:B.11.设函数f(x)=,则使得f(2x)>f(x﹣3)成立的x的取值范围是()A.(﹣3,1)B.(﹣∞,﹣3)∪(1,+∞)C.(﹣3,+∞)D.(﹣∞,1)【考点】函数单调性的性质.【分析】求出x>0时f(x)的表达式,结合函数的单调性以及奇偶性,得到|2x|<|x﹣3|,解出即可.【解答】解:当x>0时,f(x)==1+,x→+∞时,f(x)→1,∴f(x)在(0,+∞)上是减函数,又f(x)是偶函数,∴f(x)在(﹣∞,0)上是增函数.∵f(2x)>f(x﹣3),∴|2x|<|x﹣3|,即4x2<x2﹣6x+9,解得:﹣3<x<1,故选:A.12.若函数f(x)=x3﹣(4+log2a)x+2在(0,2]上有两个零点,则实数a的取值范围是()A.B.(,2]C.[1,4)D.[2,8)【考点】函数零点的判定定理.【分析】根据函数零点的定义,分离参数,构造函数,利用导数求出函数的最值,即可求出a的范围.【解答】解:∵函数f(x)=x3﹣(4+log2a)x+2在(0,2]上有两个零点,∴log2a=x2+﹣4在(0,2]上有两解,设g(x)=x2+﹣4,则g′(x)=2x﹣,得x∈(0,1)时,g′(x)<0,g(x)单调递减,x∈(1,2)时,g′(x)>0,g(x)单调递增,又g(1)=﹣1,g(2)=1,∴﹣1<log2a≤1,∴<a≤2,故选:B二、填空题:本大题共4小题,每小题5分,共20分.13.甲、乙两名同
本文标题:2020年甘肃省高考数学二诊试卷(文科)含答案解析
链接地址:https://www.777doc.com/doc-8036645 .html