您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 山西省山西大学附属中学2018-2019学年高二数学下学期3月模块诊断试题 文(含解析)
山西省山西大学附属中学2018-2019学年高二数学下学期3月模块诊断试题文(含解析)一、选择题(本大题共12个小题,每小题5分,共60分,请把答案写在答题纸上)1.下列导数运算正确的是()A.B.C.D.【答案】C【解析】【分析】根据导数的求导法则和求导公式分别进行验证后可得正确的结果.【详解】选项A中,由于,所以A不正确;选项B中,由于,所以B不正确;选项C中,由于,所以C正确;选项D中,由于,所以D不正确.故选C.【点睛】本题考查导数的运算,解题的关键是熟记求导公式和求导法则,属于简单题.2.已知的导函数的图象如图所示,那么函数的图象最有可能的是()A.B.C.D.【答案】A【解析】试题分析:根据导函数图象可知,函数在(-∞,0),(2,+∞)上单调增,在(0,2)上单调减,从而可得结论.解:根据导函数图象可知,函数在(-∞,0),(2,+∞)上单调增,在(0,2)上单调减,由此可知函数f(x)的图象最有可能的是A,故选A考点:导数的符号与函数单调性关系点评:本题考查导函数与原函数图象的关系,解题的关键是利用导函数看正负,原函数看增减,属于基础题3.已知函数,则的增区间为()A.B.C.D.【答案】B【解析】【分析】求出导函数,解不等式可得函数的单调增区间.【详解】∵,∴.由,得,解得.∴函数的增区间为.故选B.【点睛】用导数求函数单调区间的步骤:①求出函数的定义域;②求出导函数;③由可得函数的单调增区间;由可得函数的单调减区间.解题时注意导函数的符号和函数单调性间的关系,属于基础题.4.函数有()A.极大值5,无极小值B.极小值,无极大值C.极大值5,极小值D.极大值5,极小值【答案】A【解析】试题分析:,所以增区间为,减区间为,所以当时有极大值,无极小值考点:函数导数与极值5.已知函数的导函数为,且满足关系式,则的值等于()A.B.C.D.【答案】A【解析】【分析】先求出,然后利用赋值法得到,进而得到的解析式,于是可求得的值.【详解】∵,∴,令得,解得.∴,∴.故选A.【点睛】本题考查导函数和函数值的求法,解题的关键是正确理解的意义,注意是个数,考查理解和应用能力,属于基础题.6.若函数存在极值,则实数的取值范围是()A.B.C.D.【答案】A【解析】【分析】先求出函数不存在极值,即函数单调时的范围,即可根据其补集得出结果.【详解】若函数不存在极值,则函数单调,当单调递增时,只需恒成立,即恒成立,因此;当单调递减时,只需恒成立,即恒成立,因此;因为函数存在极值,所以函数不单调,因此.故选A【点睛】本题主要考查导数的应用,根据函数有极值求参数时,可先求函数单调时参数的范围,进而可求出结果,属于常考题型.7.已知函数,则曲线上任意一点处的切线的倾斜角的取值范围是()A.B.C.D.【答案】C【解析】【分析】求出,然后再求出的值域,即得到切线斜率的取值范围,然后可得倾斜角的范围.【详解】∵,∴,当且仅当,即时等号成立.∴,又,∴,即倾斜角的取值范围是.故选C.【点睛】本题考查导数几何意义及其应用,解题的关键是求出导函数的值域,然后根据斜率与倾斜角的关系得到所求,考查综合运用知识解决问题的能力,属于基础题.8.函数的图象在处的切线方程为,则的值为()A.B.C.D.【答案】B【解析】【分析】根据导数的几何意义求出切线的斜率,进而得到的值,然后再求出切点坐标,代入切线方程后可求得的值.【详解】∵,∴.由题意得,解得,∴.∴当时,,故切点坐标为,将切点坐标代入切线方程得,解得.故选B.【点睛】利用导数的几何意义求切线方程时,一是要注意“曲线在点处的切线”和“曲线过点的切线”两种说法的区别;二是解题时要注意切点既在曲线上又在切线上这一条件的应用.考查计算能力,属于基础题.9.定义在上的函数满足:,,则不等式(其中为自然对数的底数)的解集为()A.B.C.D.【答案】A【解析】令而等价于,选A.点睛:利用导数解抽象函数不等式,实质是利用导数研究对应函数单调性,而对应函数需要构造.构造辅助函数常根据导数法则进行:如构造,构造,构造,构造等10.若函数在区间内任取有两个不相等的实数,,不等式恒成立,则的取值范围是()A.B.C.D.【答案】C【解析】将化为,因为恒成立,所以在区间内单调递增,即在区间内恒成立,即在区间内恒成立,而,所以;故选C.点睛:本题的难点在于如何根据合理构造函数,且判定新函数的单调性,要求在做题中多积累、多总结.11.已知,则的最小值为()A.B.C.D.【答案】B【解析】【分析】由题意可化为,故得.令,,则表示直线上的点与曲线上的点的最小距离的平方.利用导数的几何意义求出切点,再利用点到直线的距离公式即可得出所求结论.【详解】由题意,可化为,故得.令,则表示直线上的点与曲线上的点的最小距离的平方.设直线与曲线相切于点,不妨取.∵,∴,解得.∴切点为,∴,解得,∴切点到直线的距离,∴的最小值为.故选B.【点睛】解答本题的关键在于读懂题意,将所求转化为点到直线的距离的平方的最小值求解,即转化为两条平行线间的距离求解,体现了转化和数形结合在解题中的应用,具有一定的难度和综合性,考查对导数几何意义的理解和应用.12.已知,是的导函数,则()A.8056B.4028C.1D.2【答案】D【解析】【分析】先令,判断出函数与的奇偶性,即可求出结果.【详解】因为,令,所以,故函数为奇函数;所以,即;又,所以,即函数为偶函数,所以,即;故.故选D【点睛】本题主要考查函数奇偶性的应用,熟记函数奇偶性即可,属于常考题型.二、填空题(本大题共4个小题,每小题5分,共20分,请把答案写在答题纸上)13.函数的单调减区间是_____________.【答案】【解析】【分析】求出,然后通过解不等式可得单调减区间.【详解】由题意得函数的定义域为R.∵,∴,由,解得.∴函数的单调减区间是.故答案为:.【点睛】本题属于基础题,考查函数单调区间的求法,解题的关键是正确求出导函数和解不等式.14.设曲线在点(0,1)处的切线与曲线上点处的切线垂直,则的坐标为_____.【答案】【解析】试题分析:对y=ex求导得y′=ex,令x=0,得曲线y=ex在点(0,1)处的切线斜率为1,故曲线y=(x0)上点P处的切线斜率为-1,由y′=-=-1,得x=1,则y=1,所以P的坐标为(1,1).考点:导数的几何意义.15.若函数的定义域为,则实数的取值范围是___________.【答案】【解析】【分析】根据函数的解析式可得分母不为0,然后列出不等式,又不等式等价于函数和的图象没有交点,结合图象和切线方程可求出的取值范围.【详解】∵函数的定义域为,∴,即.令,则两函数的图象没有公共点.在同一坐标系中画出两个函数的图象,如下图所示.由得,∴与直线平行且与函数的图象相切的直线的斜率为,∴,此时,∴切点坐标为(0,1),故在点(0,1)处的切线方程为.结合图象可得,要使两个函数图象没有公共点,则需满足,解得.∴实数的取值范围是.故答案为:【点睛】解答本题的关键是将函数解析式中分母不为零的问题转化为两函数的图象没有公共点的问题求解,然后借助曲线的切线这一临界位置求解,考查转化思想和数形结合思想在解题中的应用,属于基础题.16.设函数对任意不等式恒成立,则正数的取值范围是__________.【答案】【解析】对任意,不等式恒成立,则等价为恒成立,,当且仅当,即时取等号,即的最小值是,由,则,由得,此时函数为增函数,由得,此时函数为减函数,即当时,取得极大值同时也是最大值,则的最大值为,则由,得,即,则,故答案为.三、解答题(解答应写出文字说明,证明过程或演算步骤)17.已知,若直线过点且与图象相切,求直线的方程.【答案】或【解析】【分析】设出切点坐标,根据导数的几何意义求出在切点处的切线方程,再根据切线过已知点求出切点的坐标,进而得到所求直线的方程.【详解】由,得.设曲线与过点的切线相切于点,则切线的斜率.∴切线方程为,即.∵点在切线上,∴,即,∴,解得或,∴切线方程为或,即或.【点睛】曲线“在点处的切线”与“过点的切线”的区别与联系①曲线在点处的切线是指为切点,切线斜率为的切线,是唯一的一条切线.②曲线过点的切线,是指切线经过点.点可以是切点,也可以不是切点,而且这样的直线可能有多条.18.已知函数(1)求函数在上的最大值和最小值.(2)求证:在区间上函数的图象恒在函数的图象的下方.【答案】(1)最小,最大(2)见解析【解析】【分析】(1)求得函数的导数,得到函数的单调性,进而求解函数的最值;(2)由题意,设,求得,利用导数求得函数的单调性和最小值,即作出证明.【详解】解:(1)由f(x)=x2+lnx有f′(x)=x+,当x∈[1,e]时,f′(x)0,所以f(x)max=f(e)=e2+1.f(x)min=f(1)=.(2)设F(x)=x2+lnx-x3,则F′(x)=x+-2x2=,当x∈[1,+∞)时,F′(x)0,且F(1)=-0故x∈[1,+∞)时F(x)0,所以x2+lnxx3,得证.【点睛】本题主要考查导数在函数中的应用,以及不等式的证明,着重考查了转化与化归思想、逻辑推理能力与计算能力,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,求解曲线在某点处的切线方程;(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数;(3)利用导数求函数的最值(极值),解决函数的恒成立与有解问题,同时注意数形结合思想的应用.19.已知函数(1)当时,在上是增函数,求实数的取值范围;(2)当时,在处取得极值,求函数在上的值域.【答案】(1)(2)【解析】试题分析:(1)由题意可得,满足题意时在区间上横成立,即在区间上横成立,据此可得(2)由题意可得,且=0,据此可得结合导函数的解析式可得在上为减函数,在上增函数,故函数的最大值函数的最小值函数的值域为.试题解析:(1),因为在上是增函数,所以在区间上横成立,即在区间上横成立,令,,在上单调增函数.所以(2),因为处取得极值,所以=0,得出,令,在上为减函数,在上增函数,又,函数的最大值函数的最小值所以,函数上的值域为.20.近期,某市公交公司分别推出支付宝和微信扫码支付乘车活动,活动设置了一段时间的推广期,由于推广期内优惠力度较大,吸引越来越多的人开始使用扫码支付.某线路公交车队统计了活动刚推出一周内每一天使用扫码支付的人次,用表示活动推出的天数,表示每天使用扫码支付的人次(单位:十人次),统计数据如表1所示:根据以上数据,绘制了散点图.(1)根据散点图判断,在推广期内,与(均为大于零的常数)哪一个适宜作为扫码支付的人次关于活动推出天数的回归方程类型?(给出判断即可,不必说明理由);(2)根据(1)的判断结果及表1中的数据,建立关于的回归方程,并预测活动推出第8天使用扫码支付的人次;(3)推广期结束后,车队对乘客的支付方式进行统计,结果如下已知该线路公交车票价为2元,使用现金支付的乘客无优惠,使用乘车卡支付的乘客享受8折优惠,扫码支付的乘客随机优惠,根据统计结果得知,使用扫码支付的乘客中有的概率享受折优惠,有的概率享受8折优惠,有的概率享受9折优惠.根据所给数据以事件发生的频率作为相应事件发生的概率,试估计从20名乘客从中随机抽取1人,恰好享受8折优惠的概率.参考数据:661.54271150.123.47其中,参考公式:对于一组数据,其回归直线的斜率和截距的最小二乘估计公式分别为:,.【答案】(1)适宜作为扫码支付的人数关于活动推出天数的回归方程类型;(2)3470;(3).【解析】【分析】(1)根据散点图直接写出结果即可;(2)对两边同时取常用对数,得到,设,得到,根据题中数据求出,,进而可得,再化简整理即可得出回归方程;将代入所求回归方程即可求出预测值;(3)由题意确定享受八折优惠的人数,根据古典概型的概率计算公式即可求出结果.【详解】(1)根据散点图判断,适宜作为扫码支付的人数关于活动推出天数的回归方程类型;(2)∵,两边同时取常用对数得:;设∵∴,∵,∴,把
本文标题:山西省山西大学附属中学2018-2019学年高二数学下学期3月模块诊断试题 文(含解析)
链接地址:https://www.777doc.com/doc-8045129 .html