您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 2020年高考数学一轮复习 专题2.18 导数真题再现练习(含解析)
专题2.18导数真题再现1.若函数f(x)=ax2+1图象上点(1,f(1))处的切线平行于直线y=2x+1,则a=()A.﹣1B.0C.D.1【答案】D【解析】函数f(x)=ax2+1的导数为f′(x)=2ax,可得点(1,f(1))处的切线斜率为2a,由点(1,f(1))处的切线平行于直线y=2x+1,可得2a=2,解得a=1,故选:D.2.函数f(x)=的图象大致为()A.B.C.D.【答案】B【解析】函数f(﹣x)==﹣=﹣f(x),则函数f(x)为奇函数,图象关于原点对称,排除A,当x=1时,f(1)=e﹣>0,排除D.当x→+∞时,f(x)→+∞,排除C,故选:B.3.设函数f(x)=x3+(a﹣1)x2+ax.若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为()A.y=﹣2xB.y=﹣xC.y=2xD.y=x【答案】D【解析】函数f(x)=x3+(a﹣1)x2+ax,若f(x)为奇函数,f(﹣x)=﹣f(x),﹣x3+(a﹣1)x2﹣ax=﹣(x3+(a﹣1)x2+ax)=﹣x3﹣(a﹣1)x2﹣ax.所以:(a﹣1)x2=﹣(a﹣1)x2可得a=1,所以函数f(x)=x3+x,可得f′(x)=3x2+1,曲线y=f(x)在点(0,0)处的切线的斜率为:1,则曲线y=f(x)在点(0,0)处的切线方程为:y=x.故选:D.4.若x=﹣2是函数f(x)=(x2+ax﹣1)ex﹣1的极值点,则f(x)的极小值为()A.﹣1B.﹣2e﹣3C.5e﹣3D.1【答案】A【解析】函数f(x)=(x2+ax﹣1)ex﹣1,可得f′(x)=(2x+a)ex﹣1+(x2+ax﹣1)ex﹣1,x=﹣2是函数f(x)=(x2+ax﹣1)ex﹣1的极值点,可得:f′(﹣2)=(﹣4+a)e﹣3+(4﹣2a﹣1)e﹣3=0,即﹣4+a+(3﹣2a)=0.解得a=﹣1.可得f′(x)=(2x﹣1)ex﹣1+(x2﹣x﹣1)ex﹣1,=(x2+x﹣2)ex﹣1,函数的极值点为:x=﹣2,x=1,当x<﹣2或x>1时,f′(x)>0函数是增函数,x∈(﹣2,1)时,函数是减函数,x=1时,函数取得极小值:f(1)=(12﹣1﹣1)e1﹣1=﹣1.故选:A.5.若函数f(x)=x﹣sin2x+asinx在(﹣∞,+∞)单调递增,则a的取值范围是()A.[﹣1,1]B.[﹣1,]C.[﹣,]D.[﹣1,﹣]【答案】C【解析】函数f(x)=x﹣sin2x+asinx的导数为f′(x)=1﹣cos2x+acosx,由题意可得f′(x)≥0恒成立,即为1﹣cos2x+acosx≥0,即有﹣cos2x+acosx≥0,设t=cosx(﹣1≤t≤1),即有5﹣4t2+3at≥0,当t=0时,不等式显然成立;当0<t≤1时,3a≥4t﹣,由4t﹣在(0,1]递增,可得t=1时,取得最大值﹣1,可得3a≥﹣1,即a≥﹣;当﹣1≤t<0时,3a≤4t﹣,由4t﹣在[﹣1,0)递增,可得t=﹣1时,取得最小值1,可得3a≤1,即a≤.综上可得a的范围是[﹣,].另解:设t=cosx(﹣1≤t≤1),即有5﹣4t2+3at≥0,由题意可得5﹣4+3a≥0,且5﹣4﹣3a≥0,解得a的范围是[﹣,].故选:C.6.已知函数f(x)=exlnx,f′(x)为f(x)的导函数,则f′(1)的值为.【答案】e【解析】函数f(x)=exlnx,则f′(x)=exlnx+•ex;∴f′(1)=e•ln1+1•e=e.故答案为:e.7.若函数f(x)=2x3﹣ax2+1(a∈R)在(0,+∞)内有且只有一个零点,则f(x)在[﹣1,1]上的最大值与最小值的和为.【答案】-3【解析】∵函数f(x)=2x3﹣ax2+1(a∈R)在(0,+∞)内有且只有一个零点,∴f′(x)=2x(3x﹣a),x∈(0,+∞),①当a≤0时,f′(x)=2x(3x﹣a)>0,函数f(x)在(0,+∞)上单调递增,f(0)=1,f(x)在(0,+∞)上没有零点,舍去;②当a>0时,f′(x)=2x(3x﹣a)>0的解为x>,∴f(x)在(0,)上递减,在(,+∞)递增,又f(x)只有一个零点,∴f()=﹣+1=0,解得a=3,f(x)=2x3﹣3x2+1,f′(x)=6x(x﹣1),x∈[﹣1,1],f′(x)>0的解集为(﹣1,0),f(x)在(﹣1,0)上递增,在(0,1)上递减,f(﹣1)=﹣4,f(0)=1,f(1)=0,∴f(x)min=f(﹣1)=﹣4,f(x)max=f(0)=1,∴f(x)在[﹣1,1]上的最大值与最小值的和为:f(x)max+f(x)min=﹣4+1=﹣3.8.曲线y=2lnx在点(1,0)处的切线方程为.【答案】y=2x-2【解析】∵y=2lnx,∴y′=,当x=1时,y′=2∴曲线y=2lnx在点(1,0)处的切线方程为y=2x﹣2.故答案为:y=2x﹣2.9.已知函数f(x)=2sinx+sin2x,则f(x)的最小值是.【答案】【解析】由题意可得T=2π是f(x)=2sinx+sin2x的一个周期,故只需考虑f(x)=2sinx+sin2x在[0,2π)上的值域,先来求该函数在[0,2π)上的极值点,求导数可得f′(x)=2cosx+2cos2x=2cosx+2(2cos2x﹣1)=2(2cosx﹣1)(cosx+1),令f′(x)=0可解得cosx=或cosx=﹣1,可得此时x=,π或;∴y=2sinx+sin2x的最小值只能在点x=,π或和边界点x=0中取到,计算可得f()=,f(π)=0,f()=﹣,f(0)=0,∴函数的最小值为﹣10.曲线y=(ax+1)ex在点(0,1)处的切线的斜率为﹣2,则a=﹣3.【答案】-3【解析】曲线y=(ax+1)ex,可得y′=aex+(ax+1)ex,曲线y=(ax+1)ex在点(0,1)处的切线的斜率为﹣2,可得:a+1=﹣2,解得a=﹣3.故答案为:﹣3.11.曲线y=2ln(x+1)在点(0,0)处的切线方程为y=2x.【答案】y=2x【解析】∵y=2ln(x+1),∴y′=,当x=0时,y′=2,∴曲线y=2ln(x+1)在点(0,0)处的切线方程为y=2x.故答案为:y=2x.12.若曲线的切线l与直线平行,则l的方程为.【答案】3x﹣4y+5=0【解析】设切点为(m,n),可得m+=n,的导数为y′=1﹣,由切线l与直线平行,可得1﹣=,解得m=3,即有切点为(3,),可得切线的方程为y﹣=(x﹣3),即为3x﹣4y+5=0.故答案为:3x﹣4y+5=0.13.已知a∈R,设函数f(x)=ax﹣lnx的图象在点(1,f(1))处的切线为l,则l在y轴上的截距为.【答案】1【解析】函数f(x)=ax﹣lnx,可得f′(x)=a﹣,切线的斜率为:k=f′(1)=a﹣1,切点坐标(1,a),切线方程l为:y﹣a=(a﹣1)(x﹣1),l在y轴上的截距为:a+(a﹣1)(﹣1)=1.故答案为:1.14.曲线y=x2+在点(1,2)处的切线方程为.【答案】x﹣y+1=0【解析】曲线y=x2+,可得y′=2x﹣,切线的斜率为:k=2﹣1=1.切线方程为:y﹣2=x﹣1,即:x﹣y+1=0.故答案为:x﹣y+1=0.15.已知f(x)为偶函数,当x<0时,f(x)=ln(﹣x)+3x,则曲线y=f(x)在点(1,﹣3)处的切线方程是.【答案】2x+y+1=0.【解析】f(x)为偶函数,可得f(﹣x)=f(x),当x<0时,f(x)=ln(﹣x)+3x,即有x>0时,f(x)=lnx﹣3x,f′(x)=﹣3,可得f(1)=ln1﹣3=﹣3,f′(1)=1﹣3=﹣2,则曲线y=f(x)在点(1,﹣3)处的切线方程为y﹣(﹣3)=﹣2(x﹣1),即为2x+y+1=0.故答案为:2x+y+1=0.16.已知f(x)为偶函数,当x≤0时,f(x)=e﹣x﹣1﹣x,则曲线y=f(x)在点(1,2)处的切线方程是.【答案】y=2x【解析】已知f(x)为偶函数,当x≤0时,f(x)=e﹣x﹣1﹣x,设x>0,则﹣x<0,∴f(x)=f(﹣x)=ex﹣1+x,则f′(x)=ex﹣1+1,f′(1)=e0+1=2.∴曲线y=f(x)在点(1,2)处的切线方程是y﹣2=2(x﹣1).即y=2x.故答案为:y=2x.17.若直线y=kx+b是曲线y=lnx+2的切线,也是曲线y=ln(x+1)的切线,则b=.【答案】1﹣ln2【解析】设y=kx+b与y=lnx+2和y=ln(x+1)的切点分别为(x1,kx1+b)、(x2,kx2+b);由导数的几何意义可得k==,得x1=x2+1再由切点也在各自的曲线上,可得联立上述式子解得;从而kx1+b=lnx1+2得出b=1﹣ln2.18.已知函数f(x)=ax3+x+1的图象在点(1,f(1))处的切线过点(2,7),则a=.【答案】1【解析】函数f(x)=ax3+x+1的导数为:f′(x)=3ax2+1,f′(1)=3a+1,而f(1)=a+2,切线方程为:y﹣a﹣2=(3a+1)(x﹣1),因为切线方程经过(2,7),所以7﹣a﹣2=(3a+1)(2﹣1),解得a=1.故答案为:1.三.解答题(共22小题)19.设函数f(x)=[ax2﹣(4a+1)x+4a+3]ex.(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线与x轴平行,求a;(Ⅱ)若f(x)在x=2处取得极小值,求a的取值范围.【答案】(1)1(2)(,+∞).【解析】(Ⅰ)函数f(x)=[ax2﹣(4a+1)x+4a+3]ex的导数为f′(x)=[ax2﹣(2a+1)x+2]ex.由题意可得曲线y=f(x)在点(1,f(1))处的切线斜率为0,可得(a﹣2a﹣1+2)e=0,且f(1)=3e≠0,解得a=1;(Ⅱ)f(x)的导数为f′(x)=[ax2﹣(2a+1)x+2]ex=(x﹣2)(ax﹣1)ex,若a=0则x<2时,f′(x)>0,f(x)递增;x>2,f′(x)<0,f(x)递减.x=2处f(x)取得极大值,不符题意;若a>0,且a=,则f′(x)=(x﹣2)2ex≥0,f(x)递增,无极值;若a>,则<2,f(x)在(,2)递减;在(2,+∞),(﹣∞,)递增,可得f(x)在x=2处取得极小值;若0<a<,则>2,f(x)在(2,)递减;在(,+∞),(﹣∞,2)递增,可得f(x)在x=2处取得极大值,不符题意;若a<0,则<2,f(x)在(,2)递增;在(2,+∞),(﹣∞,)递减,可得f(x)在x=2处取得极大值,不符题意.综上可得,a的范围是(,+∞).20.已知函数f(x)=(2+x+ax2)ln(1+x)﹣2x.(1)若a=0,证明:当﹣1<x<0时,f(x)<0;当x>0时,f(x)>0;(2)若x=0是f(x)的极大值点,求a.【答案】见解析【解析】(1)证明:当a=0时,f(x)=(2+x)ln(1+x)﹣2x,(x>﹣1).,,可得x∈(﹣1,0)时,f″(x)≤0,x∈(0,+∞)时,f″(x)≥0∴f′(x)在(﹣1,0)递减,在(0,+∞)递增,∴f′(x)≥f′(0)=0,∴f(x)=(2+x)ln(1+x)﹣2x在(﹣1,+∞)上单调递增,又f(0)=0.∴当﹣1<x<0时,f(x)<0;当x>0时,f(x)>0.(2)解:由f(x)=(2+x+ax2)ln(1+x)﹣2x,得f′(x)=(1+2ax)ln(1+x)+﹣2=,令h(x)=ax2﹣x+(1+2ax)(1+x)ln(x+1),h′(x)=4ax+(4ax+2a+1)ln(x+1).当a≥0,x>0时,h′(x)>0,h(x)单调递增,∴h(x)>h(0)=0,即f′(x)>0,∴f(x)在(0,+∞)上单调递增,故x=0不是f(x)的极大值点,不符合题意.当a<0时,h″(x)=8a+4aln(x+1)+,显然h″(x)单调递减,①令h″(0)=0,解得a=﹣.∴当﹣1<x<0时,h″(x)>0,
本文标题:2020年高考数学一轮复习 专题2.18 导数真题再现练习(含解析)
链接地址:https://www.777doc.com/doc-8061358 .html