您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 沪科版八年级数学下《第18单元勾股定理》单元测试题含答案
[在此处键入]密封线学校班级姓名学号密封线内不得答题沪科版8年级数学(下)第18章单元精编试题满分:150分一、单选题(共10题;共40分)1.以下列各组数为边长,能组成直角三角形的是()A.2,3,4B.10,8,4C.7,25,24D.7,15,122.在△ABC中,AB=6,AC=8,BC=10,则该三角形为()A.锐角三角形B.直角三角形C.钝角三角形D.等腰直角三角形3.如图所示,一根树在离地面9米处断裂,树的顶部落在离底部12米处.树折断之前()米.A.15B.20C.3D.244.下列几组数据能作为直角三角形的三边长的是()A.2,3,4B.5,3,4C.4,6,9D.5,11,135.如图,在平面直角坐标系中,有两点坐标分别为(2,0)和(0,3),则这两点之间的距离是()A.B.C.13D.56.以下列各组数作为三角形的三边长,其中不能构成直角三角形的是()A.1,1,B.6,8,10C.8,15,17D.1,2,27.如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为()A.90°B.60°C.45°D.30°8.在Rt△ABC中,∠C=90°,AC=5,BC=12,CD是斜边AB边上的中线,则CD=A.2.5B.6C.13D.6.59.若三角形三边的长为下列各组数,则其中是直角三角形的是()A.6,6,6B.5,12,13C.4,5,6D.5,5,810.一艘轮船和一艘渔船同时沿各自的航向从港口O出发,如图所示,轮船从港口O沿北偏西20°的方向行60海里到达点M处,同一时刻渔船已航行到与港口O相距80海里的点N处,若M、N两点相距100海里,则∠NOF的度数为()A.50°B.60°C.70°D.80°二、填空题(共4题;共20分)11.现用火柴棒摆一个直角三角形,两直角边分别用了7根、24根长度相同的火柴棒,则斜边需用________根同样的火柴棒.12.如图,正方形网格中的△ABC,若小方格边长都为1,则△ABC是:________三角形.13.如图是一段楼梯,高BC是3米,斜边AC是5米,如果在楼梯上铺地毯,那么至少需要地毯________米.14.一木杆于离地面9m处断裂,木杆顶落于离木杆底部12m处,则木杆在断裂前高________m.三、解答题(共7题;共60分)15.(8分)一块空地的如图如示,AB=9m、BC=12m、CD=8m、AD=17m、∠ABC=90°,求这块空地的面积.16.(8分)如图,铁路上A、B两点相距25km,C、D为两村庄,DA⊥AB于A,CB⊥AB于B,已知DA=15km,CB=10km,现在要在铁路AB上建一个土特产品收购站E,使得C、D两村到E站的距离相等,则E站应建在距A站多少千米处?17.(8分)如图,在B港有甲、乙两艘渔船,若甲船沿北偏东60°方向以每小时8海里速度前进,乙船沿南偏东某方向以每小时15海里速度全速前进,2小时后甲船到M岛,乙船到P岛,两岛相距34海里,你知道乙船沿那个方向航行吗?18.(8分)如图,在△ABC中,AC=8,BC=6,在△ABE中,DE是AB边上的高,且DE=7,△ABE的面积为35,求∠C的度数.第3页,共10页第4页,共10页密封线内不得答题19.(8分)在右图的正方形网格中,每个小正方形的边长为1.请在图中画一个面积为10的正方形,并写出其边长.(要求:正方形的顶点都在格点上)20.(10分)在四边形ABCD中,AB=3,BC=4,AD=5,CD=5,∠ABC=90°,求对角线BD的长.21.(10分)已知:如图,在Rt△ABC中,∠ACB=90°,AB=5cm,AC=3cm,动点P从点B出发沿射线BC以1cm/s的速度移动.设运动的时间为ts.(1)求BC边的长;(2)当△ABP为直角三角形时,求t的值.四、综合题(共2题;共30分)22.如图,将长为2.5米长的梯子AB斜靠在墙上,BE长0.7米.(1)求梯子上端到墙的底端E的距离(即AE的长);(2)如果梯子的顶端A沿墙下滑0.4米(即AC=0.4米),则梯脚B将外移(即BD长)多少米?23.如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DE∥AC且DE=AC,连接AE交OD于点F,连接CE、OE.(1)求证:OE=CD;(2)若菱形ABCD的边长为2,∠ABC=60°,求AE的长.[在此处键入]密封线学校班级姓名学号密封线内不得答题答案解析部分一、单选题1.【答案】C【考点】勾股数【解析】【解答】解:A、不能,因为:22+32≠42;B、不能,因为:82+42≠102;C、能,因为:72+242=252;D、不能,因为:72+122≠152;故选:C.【分析】根据勾股定理的逆定理可知,当三角形中三边的关系为:a2+b2=c2时,则三角形为直角三角形.2.【答案】B【考点】勾股定理的逆定理【解析】【分析】欲求证是否为直角三角形,这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.【解答】在△ABC中,AB=6,AC=8,BC=10,推断出62+82=102,由勾股定理的逆定理得此三角形是直角三角形,故选B.【点评】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.3.【答案】D【考点】勾股定理的应用【解析】【解答】解:因为AB=9米,AC=12米,根据勾股定理得BC==15米,于是折断前树的高度是15+9=24米.故选D.【分析】根据勾股定理,计算树的折断部分是15米,则折断前树的高度是15+9=24米.4.【答案】B【考点】勾股定理的逆定理【解析】【解答】解:A、22+32≠42,根据勾股定理的逆定理不是直角三角形,故错误;B、32+42=52,根据勾股定理的逆定理是直角三角形,故正确;C、42+62≠92,根据勾股定理的逆定理不是直角三角形,故错误;D、52+112≠132,根据勾股定理的逆定理不是直角三角形,故错误.故选B.【分析】勾股定理的逆定理是判定直角三角形的方法之一.5.【答案】A【考点】勾股定理的应用【解析】【解答】解:∵A(2,0)和B(0,3),∴OA=2,OB=3,∴AB===.故选A.【分析】先根据A、B两点的坐标求出OA及OB的长,再根据勾股定理即可得出结论.6.【答案】D【考点】勾股定理的逆定理【解析】【解答】解:A、12+12=2,符合勾股定理的逆定理,故本选项不符合题意;B、62+82=102,符合勾股定理的逆定理,故本选项不符合题意;C、82+152=172,符合勾股定理的逆定理,故本选项不符合题意;D、12+22=≠22,不符合勾股定理的逆定理,故本选项符合题意.故选D.【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形.如果没有这种关系,这个就不是直角三角形.7.【答案】C【考点】勾股定理【解析】【分析】根据勾股定理即可得到AB,BC,AC的长度,进行判断即可.【解答】根据勾股定理可以得到:AC=BC=,AB=.∵()2+()2=()2.∴AC2+BC2=AB2.∴△ABC是等腰直角三角形.∴∠ABC=45°.故选C.【点评】本题考查了勾股定理,判断△ABC是等腰直角三角形是解决本题的关键.8.【答案】D【考点】勾股定理9.【答案】B【考点】勾股定理的逆定理【解析】【分析】找出四个选项中三个数字中最大的数,求出最大数的平方,剩下两数求出平方和,结果相等可根据勾股定理的逆定理得到此三角形为直角三角形,否则不是直角三角形,利用此方法即可得到的符合题意的选项.【解答】A、三边长都为6,此三角形为等边三角形,不合题意;B、∵52+122=25+144=169,132=169,∴52+122=132,则此三角形为直角三角形,符合题意;C、∵42+52=16+25=41,62=36,∴42+52≠62,则此三角形不是直角三角形,不合题意;D、∵52+52=25+25=50,82=64,∴52+52≠82,则此三角形不是直角三角形,不合题意,第7页,共10页第8页,共10页密封线内不得答题故选B.【点评】此题考查了勾股定理的逆定理的运用,勾股定理的逆定理为:三角形中,若一边的平方等于其余两边的平方和,则这条边所对的角为直角,此时三角形为直角三角形.10.【答案】C【考点】勾股定理的逆定理【解析】【解答】解:∵OM=60海里,ON=80海里,MN=100海里,∴OM2+ON2=MN2,∴∠MON=90°,∵∠EOM=20°,∴∠NOF=180°﹣20°﹣90°=70°,故选C.【分析】求出OM2+ON2=MN2,根据勾股定理的逆定理得出∠MON=90°,根据平角定义求出即可.二、填空题11.【答案】25【考点】勾股定理【解析】【解答】解:∵两直角边分别用了7根、24根长度相同的火柴棒∴斜边需用=25.【分析】根据勾股定理即可求得斜边需要的火柴棒的数量.12.【答案】直角【考点】勾股定理,勾股定理的逆定理【解析】【解答】解:∵AC2=22+32=13,AB2=62+42=52,BC2=82+12=65,∴AC2+AB2=BC2,∴△ABC是直角三角形.【分析】欲求证是否为直角三角形,这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.13.【答案】7【考点】勾股定理的应用【解析】【解答】解:∵△ABC是直角三角形,BC=3m,AC=5m∴AB===4(m),∴如果在楼梯上铺地毯,那么至少需要地毯为AB+BC=7米.故答案为:7.【分析】先根据直角三角形的性质求出AB的长,再根据楼梯高为BC的高=3m,楼梯的宽的和即为AB的长,再把AB、BC的长相加即可.14.【答案】24【考点】勾股定理的应用【解析】【解答】解:如图,∵AB=9m,AC=12m,∵∠A=90°,∴AB2+AC2=BC2,∴BC=15m,∴树折断之前有24m.故答案为:24.【分析】根据题意画出图形,利用勾股定理计算出BC的长,即可求得树折断之前的高度.三、解答题15.【答案】解:如图,连接AC.∵AB=9m、BC=12m,∠ABC=90°,∴AC2=AB2+BC2=152.又∵CD=8m、AD=17m,∴AD2=AC2+CD2=289,∴AC⊥CD,∴这块空地的面积=S△ACD+S△ABC=AB•BC+AC•CD=×9×12+×15×8=114(m2).答:这块空地的面积是114m2.【考点】勾股定理的应用【解析】【分析】由勾股定理逆定理可得△ACD与△ABC均为直角三角形,进而可求解其面积.16.【答案】解:设AE=xkm,∵C、D两村到E站的距离相等,∴DE=CE,即DE2=CE2,由勾股定理,得152+x2=102+(25﹣x)2,x=10.故:E点应建在距A站10千米处.【考点】勾股定理的应用【解析】【分析】关键描述语:产品收购站E,使得C、D两村到E站的距离相等,在Rt△DAE和Rt△CBE中,设出AE的长,可将DE和CE的长表示出来,列出等式进行求解即可.17.【答案】解:BM=8×2=16海里,BP=15×2=30海里,在△BMP中,BM2+BP2=256+900=1156,PM2=1156,BM2+BP2=PM2,∴∠MBP=90°,180°﹣90°﹣60°=30°,故乙船沿南偏东30°方向航行【考点】勾股定理的逆定理【解析】【分析】先根据路程=速度×时间,求出BM,BP的长,再根据勾股定理的逆定理得到∠MBP=90°,进一步即可求解.18.【答案】解:∵DE=7,S△ABE=DE•AB=35,∴AB=10∵AC=8,BC=6,62+82=102,∴AC2+BC2=AB2由勾股定理逆定理得∠C=90°.【考点】勾股定理【解析】【分析】由S△ABE=35,求得AB=10,根据勾股定理的逆定理得出△ABC为直角三角形,从而得到∠C的度数.19.【答案】解:∵面积为10的正方形的边长为,=,∴面积为5的正方形,如图所示.【考点】勾股定理【解析】【分析】由正方形的面积得出边长,由勾股定理
本文标题:沪科版八年级数学下《第18单元勾股定理》单元测试题含答案
链接地址:https://www.777doc.com/doc-8061759 .html