您好,欢迎访问三七文档
第13章振动波动第1节机械振动一、简谐运动的特征1.简谐运动(1)定义:如果质点所受的力与它偏离平衡位置位移的大小成正比,并且总是指向平衡位置,质点的运动就是简谐运动。(2)平衡位置:物体在振动过程中回复力为零的位置。(3)回复力①定义:使物体返回到平衡位置的力。②方向:总是指向平衡位置。③来源:属于效果力,可以是某一个力,也可以是几个力的合力或某个力的分力。2.简谐运动的两种模型模型弹簧振子单摆示意图弹簧振子(水平)简谐运动条件①弹簧质量要忽略②无摩擦等阻力③在弹簧弹性限度内①摆线为不可伸缩的轻细线②无空气阻力等③最大摆角小于等于5°回复力弹簧的弹力提供摆球重力沿与摆线垂直方向(即切向)的分力平衡位置弹簧处于原长处最低点周期与振幅无关T=2πLg能量转化弹性势能与动能的相互转化,机械能守恒重力势能与动能的相互转化,机械能守恒二、简谐运动的公式和图象1.简谐运动的表达式(1)动力学表达式:F=-kx,其中“-”表示回复力与位移的方向相反。(2)运动学表达式:x=Asin(ωt+φ),其中A代表振幅,ω=2πf,表示简谐运动的快慢,ωt+φ代表运动的相位,φ代表初相位。2.简谐运动的图象(1)从平衡位置开始计时,函数表达式为x=Asinωt,图象如图甲所示。甲乙(2)从最大位置开始计时,函数表达式为x=Acosωt,图象如图乙所示。三、受迫振动和共振1.受迫振动(1)概念:振动系统在周期性驱动力作用下的振动。(2)特点:受迫振动的频率等于驱动力的频率,跟系统的固有频率无关。2.共振(1)现象:当驱动力的频率等于系统的固有频率时,受迫振动的振幅最大。(2)条件:驱动力的频率等于固有频率。(3)特征:共振时振幅最大。(4)共振曲线(如图所示)。1.思考辨析(正确的画“√”,错误的画“×”)(1)简谐运动的平衡位置就是质点所受合力为零的位置。(×)(2)做简谐运动的质点先后通过同一点,回复力、速度、加速度、位移都是相同的。(×)(3)公式x=Asinωt说明是从平衡位置开始计时。(√)(4)简谐运动的图象描述的是振动质点的轨迹。(×)(5)物体做受迫振动时,其振动频率与固有频率无关。(√)(6)物体受迫振动的频率与驱动力的频率无关。(×)2.(多选)做简谐运动的物体,当它每次经过同一位置时,相同的物理量是()A.位移B.速度C.加速度D.回复力E.动量ACD[简谐运动的位移是指由平衡位置指向物体所在位置的有向线段,物体经过同一位置时,运动位移一定相同,选项A正确;回复力产生加速度,回复力与位移满足F=-kx的关系,只要位移相同,回复力一定相同,回复力产生的加速度也一定相同,选项C、D正确;经过同一位置,可能远离平衡位置,也可能靠近平衡位置,因此,速度的方向可能相反,选项B、E错误。]3.(多选)(2019·陕西西安市联考)下列关于简谐运动的说法正确的是()A.速度和加速度第一次同时恢复为原来的大小和方向所经历的过程为一次全振动B.位移的方向总跟加速度的方向相反,跟速度的方向相同C.一个全振动指的是动能或势能第一次恢复为原来的大小所经历的过程D.位移减小时,加速度减小,速度增大E.物体运动方向指向平衡位置时,速度的方向与位移的方向相反;背离平衡位置时,速度方向与位移方向相同ADE[速度和加速度第一次同时恢复为原来的大小和方向所经历的过程为一次全振动,故A正确;回复力与位移方向相反,故加速度和位移方向相反,但速度方向可以与位移方向相同,也可以相反,物体运动方向指向平衡位置时,速度的方向与位移的方向相反,背离平衡位置时,速度方向与位移方向相同,故B错误,E正确;一次全振动过程中,动能和势能均会有两次恢复为原来的大小,故C错误;当位移减小时,回复力减小,则加速度在减小,物体正在返回平衡位置,速度在增大,故D正确。]4.(多选)如图所示为受迫振动的演示装置,在一根张紧的绳子上悬挂几个摆球,可以用一个单摆(称为“驱动摆”)驱动另外几个单摆。下列说法正确的是()A.某个单摆摆动过程中多次通过同一位置时,速度可能不同而加速度一定相同B.如果驱动摆的摆长为L,则其他单摆的振动周期都等于2πLgC.如果驱动摆的摆长为L,振幅为A,若某个单摆的摆长大于L,振幅也大于AD.如果某个单摆的摆长等于驱动摆的摆长,则这个单摆的振幅最大E.驱动摆只把振动形式传播给其他单摆,不传播能量ABD[某个单摆摆动过程中多次通过同一位置时,速度大小相等但方向可能不同,根据F=-kx可得,加速度a=Fm=-kmx,故加速度一定相同,A正确;如果驱动摆的摆长为L,根据单摆的周期公式有T=2πLg,而其他单摆都是受迫振动,故其振动周期都等于驱动摆的周期,B正确;当受迫振动的单摆的固有周期等于驱动摆的周期时,受迫振动的振幅最大,故某个单摆的摆长大,振幅不一定也大,C错误;同一地区,单摆的固有频率只取决于单摆的摆长,则只有摆长等于驱动摆的摆长时,单摆的振幅能够达到最大,这种现象称为共振,受迫振动不仅传播运动形式,还传播能量和信息,D正确,E错误。]5.(多选)(2019·江苏高考)一单摆做简谐运动,在偏角增大的过程中,摆球的()A.位移增大B.速度增大C.回复力增大D.机械能增大AC[由简谐运动的特点可知,当偏角增大,摆球偏离平衡位置的位移增大,故A正确;当偏角增大,动能转化为重力势能,所以速度减小,故B错误;由回复力F=-kx可知,位移增大,回复力增大,故C正确;单摆做简谐运动过程中只有重力做功,所以机械能守恒,故D错误。]简谐运动的特征[依题组训练]1.(多选)(2019·南昌模拟)关于水平放置的弹簧振子所做的简谐运动,下列说法正确的是()A.位移的方向是由振子所在处指向平衡位置B.加速度的方向总是由振子所在处指向平衡位置C.经过半个周期振子经过的路程一定是振幅的2倍D.若两时刻相差半个周期,弹簧在这两个时刻的形变量一定相等E.经过半个周期,弹簧振子完成一次全振动BCD[位移的方向始终是由平衡位置指向振子所在处,选项A错误;加速度的方向始终是由振子所在处指向平衡位置,选项B正确;经过半个周期,振子经过的路程是振幅的2倍,若两时刻相差半个周期,两时刻弹簧的形变量一定相等,选项C、D正确;经过一个周期,弹簧振子完成一次全振动,选项E错误。]2.(多选)(2019·福建百校联考)如图所示,两根完全相同的轻质弹簧和一根绷紧的轻质细线将甲、乙两物块束缚在光滑水平面上。已知物块甲的质量是物块乙质量的4倍,弹簧振子做简谐运动的周期T=2πmk,式中m为振子的质量,k为弹簧的劲度系数。当细线突然断开后,两物块都开始做简谐运动,在运动过程中,下列说法正确的是()A.物块甲的振幅是物块乙振幅的4倍B.物块甲的振幅等于物块乙的振幅C.物块甲的最大速度是物块乙最大速度的12D.物块甲的振动周期是物块乙振动周期的2倍E.物块甲的振动频率是物块乙振动频率的2倍BCD[线未断开前,两根弹簧伸长的长度相同,故线断开后两物块离开平衡位置的最大距离相同,即振幅相同,故A错误,B正确;当线断开的瞬间,弹簧的弹性势能相同,到达平衡位置时,甲、乙的最大动能相同,由于甲的质量大于乙的质量,由Ek=12mv2知道,甲的最大速度是乙的最大速度的12,故C正确;根据T=2πmk可知,甲的振动周期是乙的振动周期的2倍,根据f=1T可知,甲的振动频率是乙的振动频率的12,故D正确,E错误。]3.(多选)(2019·鞍山模拟)弹簧振子做简谐运动,O为平衡位置,当它经过点O时开始计时,经过0.3s,第一次到达点M,再经过0.2s第二次到达点M,则弹簧振子的周期不可能为()A.0.53sB.1.4sC.1.6sD.2sE.3sBDE[如图甲所示,设O为平衡位置,OB(OC)代表振幅,振子从O→C所需时间为T4。因为简谐运动具有对称性,所以振子从M→C所用时间和从C→M所用时间相等,故T4=0.3s+0.22s=0.4s,解得T=1.6s;如图乙所示,若振子一开始从平衡位置向点B运动,设点M′与点M关于点O对称,则振子从点M′经过点B到点M′所用的时间与振子从点M经过点C到点M所需时间相等,即0.2s。振子从点O到点M′、从点M′到点O及从点O到点M所需时间相等,为0.3s-0.2s3=130s,故周期为T=0.5s+130s≈0.53s,所以周期不可能为选项B、D、E。]甲乙简谐运动的“五个特征”1.动力学特征:F=-kx,“-”表示回复力的方向与位移方向相反,k是比例系数,不一定是弹簧的劲度系数。2.运动学特征:简谐运动的加速度的大小与物体偏离平衡位置的位移的大小成正比,而方向相反,为变加速运动,远离平衡位置时,x、F、a、Ep均增大,v、Ek均减小,靠近平衡位置时则相反。3.运动的周期性特征:相隔T或nT的两个时刻,振子处于同一位置且振动状态相同。4.对称性特征(1)相隔T2或2n+12T(n为正整数)的两个时刻,振子位置关于平衡位置对称,位移、速度、加速度大小相等,方向相反。(2)如图所示,振子经过关于平衡位置O对称的两点P、P′(OP=OP′)时,速度的大小、动能、势能相等,相对于平衡位置的位移大小相等。(3)振子由P到O所用时间等于由O到P′所用时间,即tPO=tOP′。(4)振子往复过程中通过同一段路程(如OP段)所用时间相等,即tOP=tPO。5.能量特征:振动的能量包括动能Ek和势能Ep,简谐运动过程中,系统动能与势能相互转化,系统的机械能守恒。简谐运动的公式和图象[讲典例示法]1.简谐运动的数学表达式x=Asin(ωt+φ)2.根据简谐运动图象可获取的信息(1)确定振动的振幅A和周期T。(如图所示)(2)可以确定振动物体在任一时刻的位移。(3)确定各时刻质点的振动方向。判断方法:振动方向可以根据下一时刻位移的变化来判定。下一时刻位移若增加,质点的振动方向是远离平衡位置;下一时刻位移如果减小,质点的振动方向指向平衡位置。(4)比较各时刻质点的加速度(回复力)的大小和方向。(5)比较不同时刻质点的势能和动能的大小。质点的位移越大,它所具有的势能越大,动能越小。[典例示法](多选)如图甲所示,一单摆做小角度摆动,从某次摆球由左向右通过平衡位置开始计时,相对平衡位置的位移x随时间t变化的图象如图乙所示。不计空气阻力,取重力加速度g=10m/s2。对于这个单摆的振动过程,下列说法正确的是()甲乙A.单摆的摆长约为1.0mB.单摆的位移x随时间t变化的关系式为x=8sin(πt)cmC.从t=0.5s到t=1.0s的过程中,摆球的重力势能逐渐增大D.从t=1.0s到t=1.5s的过程中,摆球所受回复力逐渐减小E.从t=1.0s到t=1.5s的过程中,摆球所受回复力逐渐增大ABE[由题图乙可知单摆的周期T=2s,振幅A=8cm,由单摆的周期公式T=2πlg,代入数据可得l=1m,选项A正确;由ω=2πT可得ω=πrad/s,则单摆的位移x随时间t变化的关系式为x=Asinωt=8sin(πt)cm,选项B正确;从t=0.5s到t=1.0s的过程中,摆球从最高点运动到最低点,重力势能减小,选项C错误;从t=1.0s到t=1.5s的过程中,摆球的位移增大,回复力增大,选项D错误,E正确。]对简谐运动图象的两点说明(1)简谐运动的图象是一条正弦或余弦曲线,如图所示。甲乙(2)图象反映的是位移随时间的变化规律,随时间的增加而延伸,图象不代表质点运动的轨迹。[跟进训练]1.(多选)如图甲所示,水平的光滑杆上有一弹簧振子,振子以O点为平衡位置,在a、b两点之间做简谐运动,其振动图象如图乙所示。由振动图象可以得知()甲乙A.振子的振动周期等于2t1B.在t=0时刻,振子的位置在a点C.在t=t1时刻,振子的速度为零D.在t=t1时刻,振子的速度最大E.从t1到t2,振子正从O点向b点运动ADE[弹簧振子先后经历最短时间到达同一位置时,若速度相同,则这段时间间隔就等于弹簧振子的振动周期,从振动图象可以看出振子的振动周期为2t1,选项A正确;在t=0时刻,振子的位移为零,所以振子应该在平衡位置O,选项B错误;在t=t1时刻,振子在平衡
本文标题:(江苏专用)2021版高考物理一轮复习 第13章 振动 波动 第1节 机械振动教案
链接地址:https://www.777doc.com/doc-8065673 .html