您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 2021高考物理一轮复习 专题五 万有引力与航天课件
考点一万有引力定律及其应用1.开普勒行星运动定律(1)开普勒第一定律(轨道定律):所有的行星围绕太阳运行的轨道都是椭圆,太阳处在所有椭圆的一个焦点上。(2)开普勒第二定律(面积定律):对于每一个行星而言,太阳和行星的连线在相等的时间内扫过相等的面积。(3)开普勒第三定律(周期定律):所有行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等,即 =k。32aT考点清单内容自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小与物体的质量m1和m2的乘积成正比,与它们之间距离r的平方成反比公式F=G ,引力常量G=6.67×10-11N·m2/kg2适用条件①两质点间的作用②可视为质点的物体间的作用③质量分布均匀的球体间的作用122mmr2.万有引力定律(1)万有引力定律(2)引力常量数值6.67×10-11N·m2/kg2测定人英国物理学家卡文迪许,也称卡文迪什物理意义数值上等于两个质量都是1kg的物体相距1m时的相互引力测定意义①有力地证明了万有引力的存在②使定量计算得以实现实验装置P:石英丝M:平面镜O:光源N:刻度尺Q:倒立T形架实验思想主要思想:放大①利用四个球间引力②利用T形架的转动即利用力矩增大引力的可观察效果③利用小平面镜对光的反射来增大可测量的扭转角度(3)引力与重力的关系重力是因地面附近的物体受到地球的万有引力而产生的;万有引力是物体随地球自转所需向心力和重力的合力。如图所示,F引产生两个效果:一是提供物体随地球自转所需的向心力;二是产生物体的重力。由于F向=mω2r,随纬度的增大而减小,所以物体的重力随纬度的增大而增大,即重力加速度从赤道到两极逐渐增大。但F向一般很小,在一般情况下可认为重力和万有引力近似相等,即G =mg,常用g=G 来计算星球表面的重力加速度。在地球同一纬度处,重力加速度随物体离地面高度的增加而减小,因为物体所受万有引力随物体离地面高度的增加而减小,即g'=G 。2MmR2MR2()MRh3.天体质量和密度的计算考点二人造卫星、宇宙航行一、三个宇宙速度 二、同步卫星的六个“一定” 拓展一对重力的理解、重力与万有引力的区别1.地球表面物体的重力与万有引力地面上的物体所受地球的吸引力产生两个效果,其中一个分力提供了物体绕地轴做圆周运动的向心力,另一个分力等于重力。(1)在两极,向心力等于零,重力等于万有引力;(2)除两极外,物体的重力都比万有引力小;(3)在赤道处,物体的万有引力分解为两个分力(F向和mg),两分力在一条直线上,有F=F向+mg,所以mg=F-F向= -mRω2。2.地球表面附近(脱离地面)物体的重力与万有引力物体在地球表面附近(脱离地面)绕地球转时,物体所受的重力等于万有引力,即mg= ,R为地球半径,g为地球表面附近的重力加速度,上式变形得GM=gR2。2GMmR2GMmR知能拓展3.距地面一定高度处物体的重力与万有引力物体在距地面一定高度h处绕地球转时,mg'= ,R为地球半径,g'为该高度处的重力加速度。4.在匀质球体(质量为M)内部距离球心r处的质点(质量为m)受到的万有引力等于球体内半径为r的同心球体(质量为M')对其的万有引力,即F=G ,而 = ,而该处物体的重力在数值上等于该处的万有引力,则有 =mg‘,得 r=mg'。因此球体内距球心r处的重力随着r的增大成正比增加。 2()GMmRh2'Mmr3'Mr3MR332GMrmRr3GMmR例1已知质量分布均匀的球壳对壳内物体的引力为0。假设地球是一半径为R的质量分布均匀的球体,地球表面的重力加速度大小为g。试求:(1)在地面上方离地面距离为 处的重力加速度大小与在地面下方地球内部离地面距离为 处的重力加速度大小之比为多少?(2)设想地球的密度不变,自转周期不变,但地球球体半径变为原来的一半,仅考虑地球和同步卫星之间的相互作用力,则该“设想地球”的同步卫星的轨道半径与以前地球的同步卫星的轨道半径的比值是多少?2R2R解析(1)由万有引力等于重力知 =mg1 =mg2且有 = = 则 = (2)地球对同步卫星的万有引力提供同步卫星转动的向心力 =m‘ r12()2GMmRR12(-)2GMmRR1MM334π34π32ρRRρ8112gg8921'GMmr224πTM=ρ· πR3M1=ρ· π 解得 = 434332R21rr12 =m' r2122'GMmr224πT答案(1)8∶9(2) 12拓展二人造卫星的轨道参量1.卫星的轨道参量随轨道半径变化的规律动力学特征G =man=m =mω2r=m( )2r向心加速度anan=G ,即an∝ 线速度vv= ,即v∝ 角速度ωω= ,即ω∝ 周期TT= ,即T∝ 2Mmr2vr2Tπ2Mr21rGMr1r3GMr31r234rGMπ3r(1)赤道轨道:卫星的轨道在赤道平面内,同步卫星轨道就是其中的一种。(2)极地轨道:卫星的轨道过南北两极,即在垂直于赤道的平面内,如极地气象卫星轨道。(3)其他轨道:除以上两种轨道外的卫星轨道,轨道平面一定通过地球的球心。2.人造地球卫星的轨道由于万有引力提供向心力,因此所有人造地球卫星的轨道圆心都在地心上。例2(2018安徽A10联盟联考)2018年1月12日,我国成功发射北斗三号组网卫星。如图为发射卫星的示意图,先将卫星发射到半径为r的圆轨道上做圆周运动,到A点时使卫星加速进入椭圆轨道,到椭圆轨道的远地点B点时,再次改变卫星的速度,使卫星进入半径为2r的圆轨道。已知卫星在椭圆轨道时距地球的距离与速度的乘积为定值,卫星在椭圆轨道上A点时的速度为v,卫星的质量为m,地球的质量为M,引力常量为G,则发动机在A点对卫星做的功与在B点对卫星做的功之差为(忽略卫星的质量变化) () A. mv2- B. mv2- C. mv2+ D. mv2+ 3434GMmr5834GMmr3434GMmr5834GMmr解析由G =m 可知,卫星在轨道半径为r的圆轨道上运动的线速度大小v1= ,在半径为2r的圆轨道上运动的线速度大小v2= ,设卫星在椭圆轨道上B点的速度为vB,已知卫星在椭圆轨道时距地球的距离与速度的乘积为定值,则有vr=vB·2r,得卫星在椭圆轨道上B点时的速度vB= ,可知在A点时发动机对卫星做的功W1= mv2- m ,在B点时发动机对卫星做的功W2= m - m ,可得W1-W2= mv2- ,B正确。2MmR2vRGMr2GMr2v121221v1222v1222v5834GMmr答案B拓展三宇宙速度的理解与计算1.第一宇宙速度的推导方法一:由G =m 得v1= =7.9×103m/s。方法二:由mg=m 得v1= =7.9×103m/s。第一宇宙速度是发射地球人造卫星的最小速度,也是地球人造卫星的最大环绕速度,此时它的运行周期最短,Tmin=2π ≈85min。2.宇宙速度与运动轨迹的关系(1)v发=7.9km/s时,卫星绕地球表面附近做匀速圆周运动。(2)7.9km/sv发11.2km/s时,飞行器绕地球运动的轨迹为椭圆。(3)11.2km/s≤v发16.7km/s时,飞行器绕太阳做椭圆运动。(4)v发≥16.7km/s时,卫星将挣脱太阳引力的束缚,飞到太阳系以外的空间。2MmR2vRGMR2vRgRRg例3(多选)美国国家科学基金会宣布,天文学家发现一颗迄今为止与地球最类似的行星,该行星绕太阳系外的红矮星Gliese581做匀速圆周运动。这颗行星距离地球约20光年,公转周期约为37天,它的半径大约是地球的1.9倍,表面重力加速度与地球相近。下列说法正确的是 ()A.该行星的公转角速度比地球大B.该行星的质量约为地球质量的3.6倍C.该行星第一宇宙速度为7.9km/sD.要在地球上发射航天器到达该星球,发射速度只需达到地球的第二宇宙速度即可解析该行星的公转周期约为37天,而地球的公转周期为365天,根据ω= 可知该行星的公转角速度比地球大,选项A正确;忽略星球自转的影响,根据万有引力等于重力有G =mg,解得g= ,这颗行星的重力加速度与地球相近,它的半径大约是地球的1.9倍,所以它的质量约为地球的3.6倍,故B正确;要在该行星表面发射人造卫星,发射的速度最小为第一宇宙速度,第一宇宙速度v= ,R为星球半径,M为星球质量,所以这颗行星的第一宇宙速度大约是地球的 倍,而地球的第一宇宙速度为7.9km/s,故该星球的第一宇宙速度约为10.9km/s,故C错误;由于这颗行星在太阳系外,所以航天器的发射速度至少要达到第三宇宙速度,故D错误。2πT2MmR2GMRGMR1.9答案AB拓展四卫星的变轨问题人造地球卫星的发射过程要经过多次变轨,如图所示,我们从以下几个方面讨论。 1.变轨原理及过程(1)为了节省能量,在赤道上顺着地球自转方向发射卫星到圆轨道Ⅰ上。(2)在A点点火加速,由于速度变大,万有引力不足以提供在轨道Ⅰ上做圆周运动的向心力,卫星做离心运动进入椭圆轨道Ⅱ。(3)在B点(远地点)再次点火加速进入圆形轨道Ⅲ。2.一些物理量的定性分析(1)速度:设卫星在圆轨道Ⅰ和Ⅲ上运行时的速率分别为v1、v3,在轨道Ⅱ上过A点和B点时速率分别为vA、vB。因在A点加速,则vAv1,因在B点加速,则v3vB,又因v1v3,故有vAv1v3vB。(2)加速度:因为在A点,卫星只受到万有引力作用,故无论从轨道Ⅰ还是轨道Ⅱ上经过A点,卫星的加速度都相同,同理,从轨道Ⅱ和轨道Ⅲ上经过B点时加速度也相同。(3)周期:设卫星在Ⅰ、Ⅱ、Ⅲ轨道上运行周期分别为T1、T2、T3,轨道半径分别为r1、r2(半长轴)、r3,由开普勒第三定律 =k可知T1T2T3。(4)机械能:在一个确定的圆(椭圆)轨道上机械能守恒。若卫星在Ⅰ、Ⅱ、Ⅲ轨道的机械能分别为E1、E2、E3,则E1E2E3。32aT例4(多选)如图所示,发射地球同步卫星时,先将卫星发射至近地圆轨道1,然后经点火将卫星送入椭圆轨道2,然后再次点火,将卫星送入同步轨道3。轨道1、2相切于Q点,2、3相切于P点,则当卫星分别在1、2、3轨道上正常运行时,下列说法中正确的是 () A.卫星在轨道3上的速率小于在轨道1上的速率B.卫星在轨道3上的角速度大于在轨道1上的角速度C.卫星在轨道1上经过Q点时的加速度大于它在轨道2上经过Q点时的加速度D.卫星在轨道2上经过P点时的加速度等于它在轨道3上经过P点时的加速度解析由万有引力提供向心力得v= ,则半径大的速率小,A正确;由万有引力提供向心力得ω= ,则半径大的角速度小,B错误;在同一点卫星所受的地球引力相等,则加速度相等,故C错误,D正确。GMr3GMr答案AD应用一探究天体运动中双星及多星问题的处理方法实践探究1.双星模型(1)定义:绕公共圆心转动的两个星体组成的系统,我们称之为双星系统。如图所示。 (2)特点:①各自需要的向心力由彼此间的万有引力提供,即 =m1 r1, =m2 r2122GmmL21ω122GmmL22ω②两颗星的周期及角速度都相同,即T1=T2,ω1=ω2③两颗星的运动轨道半径与它们之间的距离关系为r1+r2=L④两颗星到轨道圆心的距离r1、r2与星体质量成反比 = ⑤双星的运动周期T=2π 12mm21rr312()LGmm⑥双星的总质量m1+m2= 2.多星模型2324πLGT(1)定义:所研究星体的万有引力的合力提供做圆周运动的向心力,除中央星体外,各星体的角速度和周期相同。(2)三星模型①三颗星位于同一直线上,两颗环绕星围绕中央星在同一半径为R的圆轨道上运行,如图甲。②三颗质量均为m的星体位于等边三角形的三个顶点上,如图乙。 (3)四星模型①四颗质量相等的恒星位于正方形的四个顶点上,沿着外接于正方形的圆形轨道做匀速圆周运动,如图丙。②三颗恒星位于正三角形的三个顶点上,另一颗位于中心O,外围三颗星绕O点做匀速圆周运动,如图丁。例12016年2月11日,美国科学家宣布探测到引力波。双星的运动是产生引力波的来源之一,假设宇宙中有
本文标题:2021高考物理一轮复习 专题五 万有引力与航天课件
链接地址:https://www.777doc.com/doc-8096058 .html