您好,欢迎访问三七文档
-1-四弦切角的性质ZHISHISHULI知识梳理ZHONGNANJVJIAO重难聚焦DIANLITOUXI典例透析MUBIAODAOHANG目标导航1.理解弦切角的概念,会判断弦切角.2.掌握弦切角定理的内容,并能利用定理解决有关问题.ZHISHISHULI知识梳理ZHONGNANJVJIAO重难聚焦DIANLITOUXI典例透析MUBIAODAOHANG目标导航121.弦切角顶点在圆上,一边和圆相交、另一边和圆相切的角叫做弦切角.名师点拨弦切角可分为三类:(1)圆心在角的外部,如图①;(2)圆心在角的一边上,如图②;(3)圆心在角的内部,如图③.ZHISHISHULI知识梳理ZHONGNANJVJIAO重难聚焦DIANLITOUXI典例透析MUBIAODAOHANG目标导航12【做一做1】如图,已知EC与☉O相切于点B,AB是☉O的一条弦,D是☉O上异于点A,点B的一点,则下列为弦切角的是()A.∠ADBB.∠AOBC.∠ABCD.∠BAO解析:∠ADB是圆周角,∠AOB是圆心角,∠ABC是弦切角,∠BAO不是弦切角.答案:CZHISHISHULI知识梳理ZHONGNANJVJIAO重难聚焦DIANLITOUXI典例透析MUBIAODAOHANG目标导航122.弦切角定理文字语言弦切角等于它所夹的弧所对的圆周角符号语言AB与☉O相切于点A,AC与☉O相交于点A,C,点D在☉O上,但不在弦切角∠BAC所夹的弧上,则∠BAC=∠ADC图形语言作用证明两个角相等ZHISHISHULI知识梳理ZHONGNANJVJIAO重难聚焦DIANLITOUXI典例透析MUBIAODAOHANG目标导航12归纳总结1.弦切角定理的推论:若一个圆的两个弦切角所夹的弧相等,则这两个弦切角也相等.2.弦切角定理也可以表述为弦切角的度数等于它所夹的弧的度数的一半.这就建立了弦切角与弧之间的数量关系,它为直接依据弧进行角的转换确立了基础.ZHISHISHULI知识梳理ZHONGNANJVJIAO重难聚焦DIANLITOUXI典例透析MUBIAODAOHANG目标导航123.圆心角、圆周角、弦切角的比较.圆心角圆周角弦切角定义顶点在圆心的角顶点在圆上,两边和圆相交顶点在圆上,一边和圆相交,另一边和圆相切图形角与弧的关系∠AOB的度数=AB的度数∠ACB的度数=12AB的度数∠ACB的度数=12AC的度数ZHISHISHULI知识梳理ZHONGNANJVJIAO重难聚焦DIANLITOUXI典例透析MUBIAODAOHANG目标导航12【做一做2-1】如图,MN与☉O相切于点M,Q和P是☉O上两点,若∠PQM=70°,则∠NMP等于()A.20°B.70°C.110°D.160°解析:∵∠NMP是弦切角,∴∠NMP=∠PQM=70°.答案:BZHISHISHULI知识梳理ZHONGNANJVJIAO重难聚焦DIANLITOUXI典例透析MUBIAODAOHANG目标导航12【做一做2-2】过圆内接△ABC的顶点A引☉O的切线交BC的延长线于点D,若∠B=35°,∠ACB=80°,则∠D为()A.45°B.50°C.55°D.60°解析:如图,∵AD为☉O的切线,∴∠DAC=∠B=35°.∵∠ACB=80°,∴∠D=∠ACB-∠DAC=80°-35°=45°.答案:AZHISHISHULI知识梳理ZHONGNANJVJIAO重难聚焦DIANLITOUXI典例透析MUBIAODAOHANG目标导航对弦切角的理解剖析:弦切角的特点:(1)顶点在圆上;(2)一边与圆相交;(3)另一边与圆相切.弦切角定义中的三个条件缺一不可.如图①②③④中的角都不是弦切角.图①中,缺少“顶点在圆上”的条件;图②中,缺少“一边和圆相交”的条件;图③中,缺少“一边和圆相切”的条件;图④中,缺少“顶点在圆上”和“另一边和圆相切”两个条件.ZHISHISHULI知识梳理ZHONGNANJVJIAO重难聚焦DIANLITOUXI典例透析MUBIAODAOHANG目标导航题型一题型二题型三题型一平行问题【例1】如图,AD是△ABC中∠BAC的平分线,☉O经过点A且与BC切于点D,与AB,AC分别相交于点E,F.求证:EF∥BC.分析:连接DF,于是∠FDC=∠DAC,根据AD是∠BAC的平分线,有∠BAD=∠DAC,而∠BAD与∠EFD对着同一段弧,由此得到∠EFD与∠FDC的相等关系,根据内错角相等,可以断定两条直线平行.ZHISHISHULI知识梳理ZHONGNANJVJIAO重难聚焦DIANLITOUXI典例透析MUBIAODAOHANG目标导航题型一题型二题型三证明:如图,连接DF,∵AD是∠BAC的平分线,∴∠BAD=∠DAC.∵∠EFD=∠BAD,∴∠EFD=∠DAC.∵BC切☉O于点D,∴∠FDC=∠DAC.∴∠EFD=∠FDC.∴EF∥BC.反思当已知条件中出现圆的切线时,借助于弦切角定理,常用角的关系证明两条直线平行:①内错角相等,两条直线平行;②同位角相等,两条直线平行;③同旁内角互补,两条直线平行等.证明时可以根据图形与已知条件合理地选择.ZHISHISHULI知识梳理ZHONGNANJVJIAO重难聚焦DIANLITOUXI典例透析MUBIAODAOHANG目标导航题型一题型二题型三【变式训练1】如图,△ABC内接于☉O,AB的延长线与过点C的切线GC相交于点D,BE与AC相交于点F,且CB=CE.求证:BE∥DG.证明:∵CG为☉O的切线,∴∠EBC=∠GCE.∴∠EBC=∠E.∴∠E=∠GCE.∴DG∥BE.∵CB=CE,∴𝐶𝐵=𝐶𝐸,ZHISHISHULI知识梳理ZHONGNANJVJIAO重难聚焦DIANLITOUXI典例透析MUBIAODAOHANG目标导航题型一题型二题型三题型二线段成比例问题【例2】已知△ABC内接于☉O,∠BAC的平分线交☉O于点D,CD的延长线交过点B的切线于点E.分析:直接证明此等式有一定的难度,可以考虑把它分解成两个比例式的形式,借助相似三角形的性质得出结论.求证:𝐶𝐷2𝐵𝐶2=𝐷𝐸𝐶𝐸.ZHISHISHULI知识梳理ZHONGNANJVJIAO重难聚焦DIANLITOUXI典例透析MUBIAODAOHANG目标导航题型一题型二题型三证明:连接BD,如图.∵AD是∠BAC的平分线,∴∠BAD=∠CAD.又∠BCD=∠BAD,∠CBD=∠CAD,∴∠BCD=∠CBD.∴BD=CD.ZHISHISHULI知识梳理ZHONGNANJVJIAO重难聚焦DIANLITOUXI典例透析MUBIAODAOHANG目标导航题型一题型二题型三又BE为☉O的切线,∴∠EBD=∠BCD.在△BED和△CEB中,∠EBD=∠ECB,∠BED=∠CEB,∴△BED∽△CEB.∴𝐵𝐷𝐵𝐶=𝐵𝐸𝐶𝐸,𝐵𝐷𝐵𝐶=𝐷𝐸𝐵𝐸,∴𝐵𝐷𝐵𝐶2=𝐷𝐸𝐶𝐸.又BD=CD,∴𝐶𝐷2𝐵𝐶2=𝐷𝐸𝐶𝐸.反思已知直线与圆相切,证明线段成比例时,常先利用弦切角定理和圆周角定理得到角相等,再通过三角形相似得到成比例线段.ZHISHISHULI知识梳理ZHONGNANJVJIAO重难聚焦DIANLITOUXI典例透析MUBIAODAOHANG目标导航∴𝐴𝐷=𝐵𝐶,题型一题型二题型三【变式训练2】如图,AB为☉O的直径,弦CD∥AB,AE切☉O于点A,交CD的延长线于点E.求证:BC2=AB·DE.证明:如图,连接BD,OD,OC.∵AE切☉O于点A,∴∠EAD=∠ABD,且AE⊥AB.又AB∥CD,∴AE⊥CE,∴∠E=90°.∵AB为☉O的直径,∴∠ADB=90°.∴∠E=∠ADB,∴△ADE∽△BAD,∴AD2=AB·DE.∵CD∥AB,∴∠1=∠2,∠3=∠4.∵∠2=∠4,∴∠1=∠3,∴AD=BC,∴BC2=AB·DE.∴𝐴𝐷𝐴𝐵=𝐷𝐸𝐴𝐷,ZHISHISHULI知识梳理ZHONGNANJVJIAO重难聚焦DIANLITOUXI典例透析MUBIAODAOHANG目标导航题型一题型二题型三题型三易错辨析易错点:忽视弦切角的一边是切线致错【例3】如图,已知△ABC内接于☉O,AD⊥AC,∠C=32°,∠B=110°,则∠BAD=.错解:∵AD⊥AC,∴∠BAD是弦切角.∴∠BAD=∠C.又∠C=32°,∴∠BAD=32°.错因分析:错解中,误认为∠BAD是弦切角.虽然AD⊥AC,但AD不是切线.ZHISHISHULI知识梳理ZHONGNANJVJIAO重难聚焦DIANLITOUXI典例透析MUBIAODAOHANG目标导航题型一题型二题型三正解:∵∠C+∠B+∠BAC=180°,∴∠BAC=180°-∠C-∠B=38°.又AD⊥AC,∴∠BAC+∠BAD=90°.∴∠BAD=90°-∠BAC=90°-38°=52°.答案:52°反思在利用弦切角定理解决问题时,要注意所涉及的角是不是弦切角,即弦切角的三个条件缺一不可.ZHISHISHULI知识梳理ZHONGNANJVJIAO重难聚焦DIANLITOUXI典例透析MUBIAODAOHANG目标导航
本文标题:2019版高中数学 第二讲 直线与圆的位置关系 2.4 弦切角的性质课件 新人教A版选修4-1
链接地址:https://www.777doc.com/doc-8114559 .html