您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 广东省广州市2016届高考数学1月模拟试卷-文(含解析)
2016年广东省广州市高考数学模拟试卷(文科)(1月份)一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.若全集U=R,集合A={x|0<x<2},B={x|x﹣1>0},则A∩∁UB=()A.{x|0<x≤1}B.{x|1<x<2}C.{x|0<x<1}D.{x|1≤x<2}2.已知a,b∈R,i是虚数单位,若a﹣i与2+bi互为共轭复数,则(a+bi)2=()A.5﹣4iB.5+4iC.3﹣4iD.3+4i3.已知||=1,=(0,2),且•=1,则向量与夹角的大小为()A.B.C.D.4.已知E,F,G,H是空间四点,命题甲:E,F,G,H四点不共面,命题乙:直线EF和GH不相交,则甲是乙成立的()A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件5.设a=log37,b=21.1,c=0.83.1,则()A.b<a<cB.a<c<bC.c<b<aD.c<a<b6.已知f(x)在R上是奇函数,且满足f(x+4)=f(x),当x∈(0,2)时,f(x)=2x2,则f(7)=()A.2B.﹣2C.﹣98D.987.一个几何体的三视图如图所示,其中正视图与侧视图都是斜边长为2的直角三角形,俯视图是半径为1的圆周和两条半径,则这个几何体的体积为()A.πB.πC.πD.π8.数列{an}中,对任意n∈N*,a1+a2+…+an=2n﹣1,则a12+a22+…+an2等于()A.(2n﹣1)2B.C.4n﹣1D.9.已知sinφ=,且φ∈(,π),函数f(x)=sin(ωx+φ)(ω>0)的图象的相邻两条对称轴之间的距离等于,则f()的值为()A.﹣B.﹣C.D.10.执行如图所示的程序框图输出的结果为()A.(﹣2,2)B.(﹣4,0)C.(﹣4,﹣4)D.(0,﹣8)11.已知双曲线=1(a>0,b>0)的右焦点到左顶点的距离等于它到渐近线距离的2倍,则其渐近线方程为()A.2x±y=0B.x±2y=0C.4x±3y=0D.3x±4y=012.已知y=f(x)为R上的连续可导函数,且xf′(x)+f(x)>0,则函数g(x)=xf(x)+1(x>0)的零点个数为()A.0B.1C.0或1D.无数个二.填空题:本大题共4小题,每小题5分.13.函数y=的定义域是.14.设x,y满足约束条件,则z=x﹣2y的最大值为.15.设数列{an}的各项都是正数,且对任意n∈N*,都有4Sn=an2+2an,其中Sn为数列{an}的前n项和,则数列{an}的通项公式为an=.16.已知以F为焦点的抛物线y2=4x上的两点A,B满足=2,则弦AB中点到抛物线准线的距离为.三.解答题:解答应写出文字说明,证明过程或演算步骤.17.在△ABC中,角A、B、C对应的边分别是a、b、c,已知3cosBcosC+2=3sinBsinC+2cos2A.(I)求角A的大小;(Ⅱ)若△ABC的面积S=5,b=5,求sinBsinC的值.18.“冰桶挑战赛”是一项社交网络上发起的慈善公益活动,活动规定:被邀请者要么在24小时内接受挑战,要么选择为慈善机构捐款(不接受挑战),并且不能重复参加该活动.若被邀请者接受挑战,则他需在网络上发布自己被冰水浇遍全身的视频内容,然后便可以邀请另外3个人参与这项活动.假设每个人接受挑战与不接受挑战是等可能的,且互不影响.(Ⅰ)若某参与者接受挑战后,对其他3个人发出邀请,则这3个人中至少有2个人接受挑战的概率是多少?(Ⅱ)为了解冰桶挑战赛与受邀者的性别是否有关,某调查机构进行了随机抽样调查,调查得到如下2×2列联表:接受挑战不接受挑战合计男性451560女性251540合计7030100根据表中数据,能否有90%的把握认为“冰桶挑战赛与受邀者的性别有关”?附:K2=P(K2≥k0)0.1000.0500.0100.001k02.7063.8416.63510.82819.在直三棱柱ABC﹣A1B1C1中,AB=AC=AA1=3,BC=2,D是BC的中点,F是C1C上一点.(1)当CF=2,求证:B1F⊥平面ADF;(2)若FD⊥B1D,求三棱锥B1﹣ADF体积.20.定圆M:=16,动圆N过点F且与圆M相切,记圆心N的轨迹为E.(I)求轨迹E的方程;(Ⅱ)设点A,B,C在E上运动,A与B关于原点对称,且|AC|=|CB|,当△ABC的面积最小时,求直线AB的方程.21.已知函数f(x)=(m,n∈R)在x=1处取到极值2.(1)求f(x)的解析式;(2)设函数g(x)=lnx+,若对任意的x1∈[﹣1,1],总存在x2∈[1,e],使得g(x2)≤f(x1)+,求实数a的取值范围.请考生在第22、23、24题中任选一题做答,如果多做,则按所做的第一题计分.做答时请写清题号.选修4-1:几何证明选讲22.如图∠ACB=90°,CD⊥AB于点D,以BD为直径的eO与BC交于点E.(Ⅰ)求证:BC•CD=AD•DB;(Ⅱ)若BE=4,点N在线段BE上移动,∠ONF=90°,NF与⊙O相交于点F,求NF的最小值.选修4-4:坐标系与参数方程23.在平面直角坐标系xOy中,已知曲线C1:(t为参数)与曲线C2:(θ为参数,a>0).(Ⅰ)若曲线C1与曲线C2有一个公共点在x轴上,求a的值;(Ⅱ)当a=3时,曲线C1与曲线C2交于A,B两点,求A,B两点的距离.选修4-5:不等式选讲24.已知定义在R上的函数f(x)=|x﹣m|+|x|,m∈N*,存在实数x使f(x)<2成立.(Ⅰ)求实数m的值;(Ⅱ)若α,β>1,f(α)+f(β)=2,求证:+≥.2016年广东省广州市高考数学模拟试卷(文科)(1月份)参考答案与试题解析一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.若全集U=R,集合A={x|0<x<2},B={x|x﹣1>0},则A∩∁UB=()A.{x|0<x≤1}B.{x|1<x<2}C.{x|0<x<1}D.{x|1≤x<2}【考点】交、并、补集的混合运算.【分析】先求出集合B,进而求出CUB,由此能求出A∩∁UB.【解答】解:∵全集U=R,集合A={x|0<x<2},B={x|x﹣1>0}={x|x>1},∴A∩∁UB={x|0<x<2}∩{x|x≤1}={x|0<x≤1}.故选:A.2.已知a,b∈R,i是虚数单位,若a﹣i与2+bi互为共轭复数,则(a+bi)2=()A.5﹣4iB.5+4iC.3﹣4iD.3+4i【考点】复数代数形式的乘除运算.【分析】由条件利用共轭复数的定义求得a、b的值,即可得到(a+bi)2的值.【解答】解:∵a﹣i与2+bi互为共轭复数,则a=2、b=1,∴(a+bi)2=(2+i)2=3+4i,故选:D.3.已知||=1,=(0,2),且•=1,则向量与夹角的大小为()A.B.C.D.【考点】平面向量数量积的坐标表示、模、夹角.【分析】利用向量的夹角公式即可得出.【解答】解:∵||=1,=(0,2),且•=1,∴===.∴向量与夹角的大小为.故选:C.4.已知E,F,G,H是空间四点,命题甲:E,F,G,H四点不共面,命题乙:直线EF和GH不相交,则甲是乙成立的()A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】根据充分必要条件的定义分别判断充分性和必要性,从而得到答案.【解答】解:命题甲能推出命题乙,是充分条件,命题乙:直线EF和GH不相交,可能平行,命题乙推不出命题甲,不是必要条件,故选:B,5.设a=log37,b=21.1,c=0.83.1,则()A.b<a<cB.a<c<bC.c<b<aD.c<a<b【考点】对数值大小的比较.【分析】由于1<a=log37<2,b=21.1>2,c=0.83.1<1,即可得出.【解答】解:∵1<a=log37<2,b=21.1>2,c=0.83.1<1,则c<a<b.故选:D.6.已知f(x)在R上是奇函数,且满足f(x+4)=f(x),当x∈(0,2)时,f(x)=2x2,则f(7)=()A.2B.﹣2C.﹣98D.98【考点】函数的值.【分析】利用函数的周期性、奇偶性求解.【解答】解:∵f(x)在R上是奇函数,且满足f(x+4)=f(x),当x∈(0,2)时,f(x)=2x2,∴f(7)=f(﹣1)=﹣f(1)=﹣2.故选:B.7.一个几何体的三视图如图所示,其中正视图与侧视图都是斜边长为2的直角三角形,俯视图是半径为1的圆周和两条半径,则这个几何体的体积为()A.πB.πC.πD.π【考点】由三视图求面积、体积.【分析】几何体为圆锥的,根据三视图的数据计算体积即可.【解答】解:由三视图可知几何体为圆锥的,圆锥的底面半径为1,母线长为2,∴圆锥的高为.∴V=××=.故选A.8.数列{an}中,对任意n∈N*,a1+a2+…+an=2n﹣1,则a12+a22+…+an2等于()A.(2n﹣1)2B.C.4n﹣1D.【考点】数列的求和.【分析】当n≥2时,由a1+a2+…+an=2n﹣1可得a1+a2+…+an﹣1=2n﹣1﹣1,因此an=2n﹣1,当n=1时也成立.再利用等比数列的前n项和公式可得a12+a22+…+an2.【解答】解:当n≥2时,由a1+a2+…+an=2n﹣1可得a1+a2+…+an﹣1=2n﹣1﹣1,∴an=2n﹣1,当n=1时也成立.∴=4n﹣1.∴a12+a22+…+an2==.故选:D.9.已知sinφ=,且φ∈(,π),函数f(x)=sin(ωx+φ)(ω>0)的图象的相邻两条对称轴之间的距离等于,则f()的值为()A.﹣B.﹣C.D.【考点】正弦函数的图象.【分析】由周期求出ω,由条件求出cosφ的值,从而求得f()的值.【解答】解:根据函数f(x)=sin(ωx+φ)(ω>0)的图象的相邻两条对称轴之间的距离等于,可得==,∴ω=2.由sinφ=,且φ∈(,π),可得cosφ=﹣,∴则f()=sin(+φ)=cosφ=﹣,故选:B.10.执行如图所示的程序框图输出的结果为()A.(﹣2,2)B.(﹣4,0)C.(﹣4,﹣4)D.(0,﹣8)【考点】程序框图.【分析】模拟程序框图的运行过程,即可得出程序运行后输出的结果.【解答】解:模拟程序框图的运行过程,如下;x=1,y=1,k=0时,s=x﹣y=0,t=x+y=2;x=s=0,y=t=2,k=1时,s=x﹣y=﹣2,t=x+y=2;x=s=﹣2,y=t=2,k=2时,s=x﹣y=﹣4,t=x+y=0;x=s=﹣4,y=t=0,k=3时,循环终止,输出(x,y)是(﹣4,0).故选:B.11.已知双曲线=1(a>0,b>0)的右焦点到左顶点的距离等于它到渐近线距离的2倍,则其渐近线方程为()A.2x±y=0B.x±2y=0C.4x±3y=0D.3x±4y=0【考点】双曲线的简单性质.【分析】可用筛选,由4x±3y=0得y=±x,取a=3,b=4,则c=5,满足a+c=2b.【解答】解:双曲线的右焦点到左顶点的距离为a+c,右焦点到渐近线y=±x距离为d==b,所以有:a+c=2b,取a=3,b=4,得4x±3y=0,整理得y=±x,则c=5,满足a+c=2b.故选:C.12.已知y=f(x)为R上的连续可导函数,且xf′(x)+f(x)>0,则函数g(x)=xf(x)+1(x>0)的零点个数为()A.0B.1C.0或1D.无数个【考点】利用导数研究函数的单调性;函数零点的判定定理.【分析】根据函数与方程的关系,得到xf(x)=﹣1,(x>0),构造函数h(x)=xf(x),求函数的导数,研究函数的单调性和取值范围进行求解即可.【解答】解:由g(x)=xf(x)+1=0得,xf(x)=﹣1,(x>0),设h(x)=xf(x),则h′(x)=f(x)+xf′(x),∵xf′(x)+f(x)>0,∴h′(x)>0,即函数在x>0时为增函数,∵h(0)=0•f(0
本文标题:广东省广州市2016届高考数学1月模拟试卷-文(含解析)
链接地址:https://www.777doc.com/doc-8125904 .html