您好,欢迎访问三七文档
第2课时简单的三角恒等变换第四章§4.5简单的三角恒等变换NEIRONGSUOYIN内容索引题型分类深度剖析课时作业1题型分类深度剖析PARTONE题型一三角函数式的化简自主演练1.化简:sin2α-2cos2αsinα-π4=________.22cosα解析原式=2sinαcosα-2cos2α22sinα-cosα=22cosα.2.化简:2cos4x-2cos2x+122tanπ4-xsin2π4+x=________.12cos2x解析原式=124cos4x-4cos2x+12×sinπ4-xcosπ4-x·cos2π4-x=2cos2x-124sinπ4-xcosπ4-x=cos22x2sinπ2-2x=cos22x2cos2x=12cos2x.3.化简:sin2α+βsinα-2cos(α+β).解原式=sin2α+β-2sinαcosα+βsinα=sin[α+α+β]-2sinαcosα+βsinα=sinαcosα+β+cosαsinα+β-2sinαcosα+βsinα=cosαsinα+β-sinαcosα+βsinα=sin[α+β-α]sinα=sinβsinα.思维升华(1)三角函数式的化简要遵循“三看”原则:一看角,二看名,三看式子结构与特征.(2)三角函数式的化简要注意观察条件中角之间的联系(和、差、倍、互余、互补等),寻找式子和三角函数公式之间的共同点.题型二三角函数的求值多维探究例1(1)[2sin50°+sin10°(1+3tan10°)]·2sin280°=_____.命题点1给角求值与给值求值6解析原式=2sin50°+sin10°·cos10°+3sin10°cos10°·2sin80°=2sin50°+2sin10°·12cos10°+32sin10°cos10°·2cos10°=22[sin50°·cos10°+sin10°·cos(60°-10°)]=22sin(50°+10°)=22×32=6.(2)已知cosθ+π4=1010,θ∈0,π2,则sin2θ-π3=________.4-3310(3)已知cosπ4+α=35,17π12α7π4,则sin2α+2sin2α1-tanα的值为________.-2875例2(1)设α,β为钝角,且sinα=55,cosβ=-31010,则α+β的值为_____.命题点2给值求角7π4(2)已知α,β∈(0,π),且tan(α-β)=12,tanβ=-17,则2α-β的值为_____.-3π4本例(1)中,若α,β为锐角,sinα=55,cosβ=31010,则α+β=____.引申探究π4解析∵α,β为锐角,∴cosα=255,sinβ=1010,∴cos(α+β)=cosαcosβ-sinαsinβ=255×31010-55×1010=22.又0α+βπ,∴α+β=π4.思维升华(1)给角求值与给值求值问题的关键在“变角”,通过角之间的联系寻找转化方法.(2)给值求角问题:先求角的某一三角函数值,再求角的范围确定角.跟踪训练1(1)已知α∈0,π2,且2sin2α-sinα·cosα-3cos2α=0,则sinα+π4sin2α+cos2α+1=________.268(2)已知sinα=55,sin(α-β)=-1010,α,β均为锐角,则β=_____.π4解析因为α,β均为锐角,所以-π2α-βπ2.又sin(α-β)=-1010,所以cos(α-β)=31010.又sinα=55,所以cosα=255,所以sinβ=sin[α-(α-β)]=sinαcos(α-β)-cosαsin(α-β)=55×31010-255×-1010=22.所以β=π4.题型三三角恒等变换的应用师生共研例3已知函数f(x)=sin2x-cos2x-23sinxcosx(x∈R).(1)求f2π3的值;解由sin2π3=32,cos2π3=-12,得f2π3=322--122-23×32×-12=2.(2)求f(x)的最小正周期及单调递增区间.解由cos2x=cos2x-sin2x与sin2x=2sinxcosx,得f(x)=-cos2x-3sin2x=-2sin2x+π6.所以f(x)的最小正周期是π.由正弦函数的性质,得π2+2kπ≤2x+π6≤3π2+2kπ,k∈Z,解得π6+kπ≤x≤2π3+kπ,k∈Z.所以f(x)的单调递增区间为π6+kπ,2π3+kπ(k∈Z).思维升华三角恒等变换的应用策略(1)进行三角恒等变换要抓住:变角、变函数名称、变结构,尤其是角之间的关系;注意公式的逆用和变形使用.(2)把形如y=asinx+bcosx化为y=sin(x+φ),可进一步研究函数的周期性、单调性、最值与对称性.a2+b2跟踪训练2已知角α的顶点在坐标原点,始边与x轴的非负半轴重合,终边经过点P(-3,3).(1)求sin2α-tanα的值;解∵角α的终边经过点P(-3,3),∴sinα=12,cosα=-32,tanα=-33.∴sin2α-tanα=2sinαcosα-tanα=-32+33=-36.(2)若函数f(x)=cos(x-α)cosα-sin(x-α)sinα,求函数g(x)=3fπ2-2x-2f2(x)在区间0,2π3上的值域.解∵f(x)=cos(x-α)cosα-sin(x-α)sinα=cosx,x∈R,∴g(x)=3cosπ2-2x-2cos2x=3sin2x-1-cos2x=2sin2x-π6-1,∵0≤x≤2π3,∴-π6≤2x-π6≤7π6.∴-12≤sin2x-π6≤1,∴-2≤2sin2x-π6-1≤1,故函数g(x)=3fπ2-2x-2f2(x)在区间0,2π3上的值域是[-2,1].思想方法SIXIANGFANGFA化归思想和整体代换思想在三角函数中的应用讨论形如y=asinωx+bcosωx型函数的性质,一律化成y=sin(ωx+φ)型的函数;研究y=Asin(ωx+φ)型函数的最值、单调性,可将ωx+φ视为一个整体,换元后结合y=sinx的图象解决.a2+b2例已知函数f(x)=4tanx·sinπ2-x·cosx-π3-3.(1)求f(x)的定义域与最小正周期;解f(x)的定义域为xx≠π2+kπ,k∈Z.f(x)=4tanxcosxcosx-π3-3=4sinxcosx-π3-3=4sinx12cosx+32sinx-3=2sinxcosx+23sin2x-3=sin2x+3(1-cos2x)-3=sin2x-3cos2x=2sin2x-π3.所以f(x)的最小正周期T=2π2=π.(2)讨论f(x)在区间-π4,π4上的单调性.解因为x∈-π4,π4,所以2x-π3∈-5π6,π6,由y=sinx的图象可知,当2x-π3∈-5π6,-π2,即x∈-π4,-π12时,f(x)单调递减;当2x-π3∈-π2,π6,即x∈-π12,π4时,f(x)单调递增.所以当x∈-π4,π4时,f(x)在区间-π12,π4上单调递增,在区间-π4,-π12上单调递减.2课时作业PARTTWO1.若sinπ3-α=14,则cosπ3+2α=_____.基础保分练12345678910111213141516-78解析cosπ3+2α=cosπ-23π-2α=-cos23π-2α=-1-2sin2π3-α=-1-2×142=-78.12345678910111213141516解析原式=4sin40°-sin40°cos40°=4cos40°sin40°-sin40°cos40°2.4cos50°-tan40°=_____.3=2sin80°-sin40°cos40°=2sin120°-40°-sin40°cos40°=3cos40°+sin40°-sin40°cos40°=3cos40°cos40°=3.123456789101112131415163.已知sin2α=35π22απ,tan(α-β)=12,则tan(α+β)=_____.-2解析由题意,可得cos2α=-45,则tan2α=-34,tan(α+β)=tan[2α-(α-β)]=tan2α-tanα-β1+tan2αtanα-β=-2.方法二tanα=tanα-π4+π4=tanα-π4+tanπ41-tanα-π4tanπ4=16+11-16=75.123456789101112131415164.(2017·江苏)若tanα-π4=16,则tanα=_____.75解析方法一∵tanα-π4=tanα-tanπ41+tanαtanπ4=tanα-11+tanα=16,∴6tanα-6=1+tanα(tanα≠-1),∴tanα=75.123456789101112131415165.若cosπ4-α=35,则sin2α=_____.-725解析由cosπ4-α=35,可得22cosα+22sinα=35,两边平方得12(1+2sinαcosα)=925,∴sin2α=-725.123456789101112131415166.已知cos4α-sin4α=23,且α∈0,π2,则cos2α+π3=________.2-156解析∵cos4α-sin4α=(sin2α+cos2α)(cos2α-sin2α)=cos2α=23,又α∈0,π2,∴2α∈(0,π),∴sin2α=1-cos22α=53,∴cos2α+π3=12cos2α-32sin2α=12×23-32×53=2-156.123456789101112131415167.函数f(x)=3sinx2cosx2+4cos2x2(x∈R)的最大值等于____.92解析由题意知f(x)=32sinx+4×1+cosx2=32sinx+2cosx+2=52sin(x+φ)+2,其中cosφ=35,sinφ=45,∵x∈R,∴f(x)max=52+2=92.因为0Aπ,所以A=π4.123456789101112131415168.在斜三角形ABC中,sinA=-2cosBcosC,且tanB·tanC=1-2,则角A的值为_____.π4解析由题意知,sinA=sin(B+C)=sinBcosC+cosBsinC=-2cosBcosC,在等式-2cosBcosC=sinBcosC+cosBsinC两边同除以cosBcosC,得tanB+tanC=-2,又tan(B+C)=tanB+tanC1-tanBtanC=-1=-tanA,即t
本文标题:(江苏专用)2020版高考数学大一轮复习 第四章 三角函数、解三角形 4.5 简单的三角恒等变换(第
链接地址:https://www.777doc.com/doc-8137010 .html