您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 人教版初中数学八年级下期中模拟测试卷
人教版2019学年初中数学8年级下期中模拟测试卷一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列各式属于最简二次根式的是()A.B.C.D.2.(4分)若代数式有意义,则x的取值范围是()A.x>﹣1且x≠1B.x≥﹣1C.x≠1D.x≥﹣1且x≠13.(4分)如图所示,在正方形ABCD中,E是AC上的一点,且AB=AE,则∠EBC的度数是()A.45度B.30度C.22.5度D.20度4.(4分)如图,在矩形ABCD中,对角线AC、BD相交于点O,若∠ACB=30°,AB=2,则BD的长为()A.4B.3C.2D.15.(4分)下列四个命题中,真命题有()①两条直线被第三条直线所截,内错角相等.②如果∠1和∠2是对顶角,那么∠1=∠2.③三角形的一个外角大于任何一个内角.④如果x2>0,那么x>0.A.1个B.2个C.3个D.4个6.(4分)下面给出四边形ABCD中∠A、∠B、∠C、∠D的度数之比,其中能判定四边形ABCD是平行四边形的是()A.3:4:4:3B.2:2:3:3C.4:3:2:1D.4:3:4:37.(4分)在平行四边形ABCD中,∠A:∠B:∠C:∠D的可能情况是()A.2:7:2:7B.2:2:7:7C.2:7:7:2D.2:3:4:58.(4分)如图,在菱形ABCD中,E是AC的中点,EF∥CB,交AB于点F,如果EF=3,那么菱形ABCD的周长为()A.24B.18C.12D.99.(4分)如图,AD是△ABC的角平分线,∠C=20°,AB+BD=AC,将△ABD沿AD所在直线翻折,点B在AC边上的落点记为点E,那么∠AED等于()A.80°B.60°C.40°D.30°10.(4分)如图,正方形ABCD中,AE=AB,直线DE交BC于点F,则∠BEF=()A.35°B.45°C.55°D.60°二.填空题(共10小题,满分30分,每小题3分)11.(3分)如图1,平行四边形纸片ABCD的面积为120,AD=20,AB=18.今沿两对角线将四边形ABCD剪成甲、乙、丙、丁四个三角形纸片.若将甲、丙合并(AD、CB重合)形成对称图形戊,如图2所示,则图形戊的两条对角线长度之和是.12.(3分)如图,在矩形ABCD中,对角线AC、BD交于点O.已知∠AOB=60°,AC=6,则BC的长为.13.(3分)如图,有一块边长为24m的长方形绿地,在绿地旁边B处有健身器材,由于居住在A处的居民践踏了绿地,小颖想在A处立一个标牌“少走步,踏之何忍”但小颖不知应填什么数字,请你帮助她填上好吗?(假设两步为1米)14.(3分)已知菱形的周长为20,一条对角线长为8,则菱形的面积为.15.(3分)已知平面直角坐标系内不同的两点A(3a+2,4)和B(3,2a+2)到x轴的距离相等,则a的值为.16.(3分)一直角三角形的两条直角边分别是4cm和3cm,则其斜边上中线的长度为.17.(3分)如图,剪两张对边平行的纸条,随意交叉叠放在一起,重合部分构成了一个四边形ABCD,当线段AD=5时,线段BC的长为.18.(3分)如图,用9个全等的等边三角形,按图拼成一个几何图案,从该图案中可以找出个平行四边形.19.(3分)四边形ABCD中,AD∥BC,要使四边形ABCD成为平行四边形还需满足的条件是(横线只需填一个你认为合适的条件即可)20.(3分)请你观察,思考下列计算过程:,由此猜想=.三.解答题(共8小题,满分80分)21.(12分)计算:(1)﹣+(2)(﹣)(+)+(﹣1)222.(8分)平行四边形ABCD中,AE、BF分别平分∠DAB和∠ABC交CD于点E、F,AE、BF交于点G.(1)求证:AE⊥BF;(2)判断DE和CF的大小关系,并说明理由23.(10分)如图,四边形ABCD中,E、F、G、H分别是AB、BD、CD、AC的中点.(1)判断四边形EFGH是何种特殊的四边形,并说明你的理由;(2)要使四边形EFGH是菱形,四边形ABCD还应满足的一个条件是.24.(8分)已知如图,O为平行四边形ABCD的对角线AC的中点,EF经过点O,且与AB交于E,与CD交于F.求证:四边形AECF是平行四边形.25.(10分)如图,在△ABC中,中线BD,CE相交于点O,F,G分别为OB,OC的中点,连接EF,FG,GD,DE.求证:四边形DEFG是平行四边形.26.(10分)如图,在两面墙之间有一个底端在A点的梯子,当它靠在一侧墙上时,梯子的顶端在B点;当它靠在另一侧墙上时,梯子的顶端在D点.已知∠BAC=60°,∠DAE=45°,点D到地面的垂直距离DE=3m.(1)求两面墙之间距离CE的大小;(2)求点B到地面的垂直距离BC的大小.27.(10分)菱形ABCD中,点P为CD上一点,连接BP.(1)如图1,若BP⊥CD,菱形ABCD边长为10,PD=4,连接AP,求AP的长.(2)如图2,连接对角线AC、BD相交于点O,点N为BP的中点,过P作PM⊥AC于M,连接ON、MN.试判断△MON的形状,并说明理由.28.(12分)某研究性学习小组在探究矩形的折纸问题时,将一块直角三角板的直角顶点绕着矩形ABCD(AB<BC)的对角线交点O旋转(如图①→②→③),图中M、N分别为直角三角板的直角边与矩形ABCD的边CD、BC的交点.(1)该学习小组中一名成员意外地发现:在图①(三角板的一直角边与OD重合)中,BN2=CD2+CN2;在图③(三角板的一直角边与OC重合)中,CN2=BN2+CD2.请你对这名成员在图①和图③中发现的结论选择其一说明理由.(2)试探究图②中BN、CN、CM、DM这四条线段之间的关系,写出你的结论,并说明理由.人教版2019学年初中数学8年级下期中模拟测试卷参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.【解答】解:A、含有能开方的因式,不是最简二次根式,故本选项错误;B、符合最简二次根式的定义,故本选项正确;C、含有能开方的因式,不是最简二次根式,故本选项错误;D、被开方数含分母,故本选项错误;故选:B.2.【解答】解:由题意得:x+1≥0,且x﹣1≠0,解得:x≥﹣1,且x≠1,故选:D.3.【解答】解:∵正方形ABCD中,∴∠BAC=45°,∵AB=AE,∴∠ABE=∠AEB=67.5°,∵∠ABE+∠ECB=90°,∴∠EBC=22.5°,故选:C.4.【解答】解:在矩形ABCD中,∠ABC=90°,∵∠ACB=30°,AB=2,∴AC=2AB=2×2=4,∵四边形ABCD是矩形,∴BD=AC=4.故选:A.5.【解答】解:两条平行直线被第三条直线所截,内错角相等,所以①错误;如果∠1和∠2是对顶角,那么∠1=∠2,所以②正确;三角形的一个外角大于任何一个不相邻的内角,所以③错误;如果x2>0,那么x≠0,所以④错误.故选:A.6.【解答】解:根据平行四边形的两组对角分别相等,可知D正确.故选:D.7.【解答】解:∵四边形ABCD是平行四边形,∴∠A=∠C,∠B=∠D,∴∠A:∠B:∠C:∠D的可能情况是2:7:2:7.故选:A.8.【解答】解:∵E是AC中点,∵EF∥BC,交AB于点F,∴EF是△ABC的中位线,∴EF=BC,∴BC=6,∴菱形ABCD的周长是4×6=24.故选:A.9.【解答】解:根据折叠的性质可得BD=DE,AB=AE.∵AC=AE+EC,AB+BD=AC,∴DE=EC.∴∠EDC=∠C=20°,∴∠AED=∠EDC+∠C=40°.故选:C.10.【解答】解:∵四边形ABCD是正方形,∴AB=AD,∠BAD=90°,∵AE=AB,∴AE=AB=AD,∴∠ABE=∠AEB,∠AED=∠ADE,∠ABE+∠AEB+∠BAE=180°,∠AED+∠ADE+∠DAE=180°,∵∠BAE+∠DAE=∠BAD=90°,∴∠ABE+∠AEB+∠AED+∠ADE=270°,∴∠AEB+∠AED=135°,即∠BED=135°,∴∠BEF=180°﹣135°=45°.故选:B.二.填空题(共10小题,满分30分,每小题3分)11.【解答】解:如图,则可得对角线EF⊥AD,且EF与平行四边形的高相等.∵平行四边形纸片ABCD的面积为120,AD=20,∴EF==3,∴EF=6,又BC=20,∴对角线之和为20+6=26,故答案为:26.12.【解答】解:∵四边形ABCD为矩形,∴OA=OB=AC=3.∵OA=OB,∠AOB=60°,∴△OAB为等边三角形.∴AB=3.在Rt△ABC中,BC==3.故答案为:3.13.【解答】解:由勾股定理得AB=26米,因为AC+BC=34米,故少走8米,即16步.14.【解答】解:BD=8,则BO=DO=4,菱形周长为20,则AB=5,菱形对角线互相垂直平分,∴OA2+OB2=AB2,AO=3,AC=6,故菱形的面积S=×6×8=24.故答案为24.15.【解答】解:∵平面直角坐标系内不同的两点A(3a+2,4)和B(3,2a+2)到x轴的距离相等,∴|2a+2|=4,解得:a1=1,a2=﹣3.故答案为:1或﹣3.16.【解答】解:由勾股定理得,斜边长==5,则其斜边上中线的长度为cm,故答案为:cm.17.【解答】解:由条件可知AB∥CD,AD∥BC,∴四边形ABCD为平行四边形,∴BC=AD=5.故答案为:5.18.【解答】解:两个全等的等边三角形,以一边为对角线构成的四边形是平行四边形,这样的两个平行四边形又可组成较大的平行四边形,从该图案中可以找出15个平行四边形.故答案为:15.19.【解答】解:根据平行四边形的判定方法,知需要增加的条件是AD=BC或AB∥CD或∠A=∠C或∠B=∠D.故答案为AD=BC(或AB∥CD).20.【解答】解:∵,∴=111111111.故答案为:111111111.三.解答题(共8小题,满分80分)21.【解答】解:(1)原式=4﹣3+=;(2)原式=5﹣2+4﹣2=7﹣2.22.【解答】(1)证明:如图,∵在平行四边形ABCD中,AD∥BC,∴∠DAB+∠ABC=180°,∵AE、BF分别平分∠DAB和∠ABC,∴∠DAB=2∠BAE,∠ABC=2∠ABF,∴2∠BAE+2∠ABF=180°,即∠BAE+∠ABF=90°,∴∠AGB=90°,∴AE⊥BF;(2)解:结论:线段DF与CE是相等关系,即DF=CE,∵在在平行四边形ABCD中,CD∥AB,∴∠DEA=∠EAB,又∵AE平分∠DAB,∴∠DAE=∠EAB,∴∠DEA=∠DAE,∴DE=AD,同理可得,CF=BC,又∵在在平行四边形ABCD中,AD=BC,∴DE=CF.23.【解答】解:(1)四边形EFGH是平行四边形;证明:在△ACD中∵G、H分别是CD、AC的中点,∴GH∥AD,GH=AD,在△ABC中∵E、F分别是AB、BD的中点,∴EF∥AD,EF=AD,∴EF∥GH,EF=GH,∴四边形EFGH是平行四边形.(2)要使四边形EFGH是菱形,四边形ABCD还应满足的一个条件是AD=BC.理由如下:∵E,F分别是AB,BD的中点,∴EF∥AD且EF=AD,同理可得:GH∥AD且GH=AD,EH∥BC且EH=BC,∴EF∥GH且EF=GH,∴四边形EFGH是平行四边形,∵AD=BC,∴AD=BC,即EF=EH,∴▱EFGH是菱形.24.【解答】证明:∵平行四边形ABCD中AB∥CD,∴∠OAE=∠OCF,又∵OA=OC,∠COF=∠AOE,∴△AOE≌△COF(ASA),∴OE=OF,∴四边形AECF是平行四边形.25.【解答】解:四边形DEFG是平行四边形,理由:∵中线BD、CE,∴DE=BC,且DE∥BC,又∵F、G分别是OB、OC的中点,∴FG=BC,且FG∥BC,∴FG=DE,且FG∥DE.∴四边形DEFG是平行四边形.26.【解答】解:(1)在Rt△DAE中,∵∠DAE=45°,∴∠ADE=∠DAE=45°,AE=DE=3m,∴AD2=AE2+DE2=36,∴AD=6,即梯子的总长为6m.
本文标题:人教版初中数学八年级下期中模拟测试卷
链接地址:https://www.777doc.com/doc-8159852 .html