您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 七年级数学下册 第三章 变量之间的关系小结与复习教学课件(新版)北师大版
小结与复习第三章变量之间的关系要点梳理考点专练课堂小结课后作业丰富的现实情境变量及其关系利用变量之间的关系解决问题、进行预测自变量和因变量变量之间关系的探索和表示(表格、关系式、图象)分析用表格、关系式、图象所表示的变量之间的关系要点梳理例1心理学家发现,学生对概念的接受能力y与提出概念所用的时间x(单位:分)之间有如下关系(其中0≤x≤30):提出概念所用时间(x)257101213141720对概念的接受能力(y)47.853.556.35959.859.959.858.355考点讲练考点一用表格表示的变量关系(1)上表中反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)当提出概念所用时间是10分钟时,学生的接受能力是多少?提出概念所用的时间x和对概念接受能力y两个变量,其中x是自变量,y是因变量;5913分钟(3)根据表格中的数据,你认为提出概念几分钟时,学生的接受能力最强?(4)从表格中可知,当时间x在什么范围内,学生的接受能力逐步增强?当时间x在什么范围内,学生的接受能力逐步降低?(5)根据表格大致估计当时间为23分钟时,学生对概念的接受能力是多少?2分钟至13分钟时,13分钟至20分钟大约52例2某蓄水池开始蓄水,每时进水20米3,设蓄水量为V(米3),蓄水时间为t(时).(1)V与t之间的关系式是什么?(2)若蓄水池最大蓄水量为1000米3,则需要多长时间能蓄满水?考点二用关系式表示的变量关系解:(1)V=20t;(2)把V=1000米3代入关系式,得1000=20t,解得t=50(时).(3)当t逐渐增加时,V怎样变化?说说你的理由.(3)当t逐渐增加时,V也在逐渐增加,因为V是t的正整数倍.针对训练1.如图,梯形上底的长是x,下底的长是15,高是8.(1)梯形面积y与上底长x之间的关系式是什么?(2)当x每增加1时,y如何变化?说说你的理由;(3)当x=0时,y等于什么?此时它表示的是什么?y=4x+60x每增加1,y增加4.当x=0时,y=60,此时它表示的是三角形的面积.考点三用图象表示的变量关系例3(2016春•蓬溪县期中)王大爷饭后出去散步,从家中走20分钟到离家900米的公园,与朋友聊天10分钟后,用15分钟返回家中.下面图形表示王大爷离家时间x(分)与离家距离y(米)之间的关系是()【分析】对四个图依次进行分析,符合题意者即为所求.DABCDOOOOAD利用函数的图象解决实际问题,正确理解函数图象横纵轴表示的意义,理解问题的过程,能够通过图象得到函数问题的相应解决.方法总结2.星期天下午,小强和小明相约在某公交车站一起乘车回学校,小强从家出发先步行到车站,等小明到了后两人一起乘公共汽车回到学校.图中折线表示小强离开家的路程y(千米)和所用的时间x(分)之间的函数关系.下列说法错误的是()A.小强从家到公共汽车站步行了2千米B.小强在公共汽车站等小明用了10分钟C.公交车的平均速度是34千米/小时D.小强乘公交车用了30分钟x(分)y(千米)C针对训练3.甲、乙两人(甲骑自行车,乙骑摩托车)从A城出发到B城旅行.如图表示甲、乙两人离开A城的路程与时间之间关系的图象.根据图象,你能得到关于甲、乙两人旅行的那些信息?100908070605040302010087654321路程(千米)摩托车自行车时间(小时)解:(1)本次旅行甲用了8小时.(2)甲比乙晚到2小时.(3)甲出发3小时后走了全程的一半.100908070605040302010087654321路程(千米)摩托车自行车时间(小时)丰富的现实情境自变量和因变量变量之间关系的探索和表示分析用表格、关系式、图象所表示的变量之间关系利用变量之间的关系解决问题、进行预测课堂小结
本文标题:七年级数学下册 第三章 变量之间的关系小结与复习教学课件(新版)北师大版
链接地址:https://www.777doc.com/doc-8177427 .html